www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Basis von Vektorräumen
Basis von Vektorräumen < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Basis von Vektorräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:34 Mi 10.01.2018
Autor: Tobikall

Aufgabe
Es seien K ein Körper und V,W Vektorräume über K. Auf V xW seien + : (V xW)× (V xW) → V xW und · : K x(V xW) → V xW definiert durch
(v1,w1) + (v2,w2) = (v1 + v2,w1 + w2),
α·(v1,w1) = (α·v1,α·w1)
für (v1,w1),(v2,w2) ∈ V ×W und α ∈ K.

Aufgabe:
Es seien m,n ∈ N und x1,...,xn eine Basis von V sowie y1,...,ym eine Basis von W. Zeigen Sie, dass
(x1,0),...,(xn,0),(0,y1),...,(0,ym) eine Basis von V ×W ist.

Hallo,
bei dem Beweis komm ich nicht weiter. Man kann doch mit dem Basisergänzugnssatz und der linearen Unabhängigkeit der einzelnen Vektoren hier argumentieren, nur mit der Verknüpfung von V und W weiß ich nicht wie man das zeigen soll? Hilfe!

        
Bezug
Basis von Vektorräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:46 Mi 10.01.2018
Autor: fred97


> Es seien K ein Körper und V,W Vektorräume über K. Auf V
> xW seien + : (V xW)× (V xW) → V xW und · : K x(V xW)
> → V xW definiert durch
> (v1,w1) + (v2,w2) = (v1 + v2,w1 + w2),
> α·(v1,w1) = (α·v1,α·w1)
> für (v1,w1),(v2,w2) ∈ V ×W und α ∈ K.
>
> Aufgabe:
>   Es seien m,n ∈ N und x1,...,xn eine Basis von V sowie
> y1,...,ym eine Basis von W. Zeigen Sie, dass
>  (x1,0),...,(xn,0),(0,y1),...,(0,ym) eine Basis von V ×W
> ist.
>  Hallo,
>  bei dem Beweis komm ich nicht weiter. Man kann doch mit
> dem Basisergänzugnssatz und der linearen Unabhängigkeit
> der einzelnen Vektoren hier argumentieren, nur mit der
> Verknüpfung von V und W weiß ich nicht wie man das zeigen
> soll? Hilfe!


Zeige es direkt !

Sei [mm] b_1=(x_1,0),...,b_n=(x_n,0) [/mm] und [mm] c_1=(0,y_1),...,c_m=(0,y_m). [/mm]

Zeige:

1. Jedes $(v,w) [mm] \in [/mm] V [mm] \times [/mm] W$ läst sich als Linearkombination der Vektoren [mm] $b_1,...,b_n,c_1,...c_m$ [/mm] darstellen.

Dann ist  [mm] $b_1,...,b_n,c_1,...c_m$ [/mm] ein Erzeugendensystem von $ V [mm] \times [/mm] W$.

2. die Vektoren [mm] $b_1,...,b_n,c_1,...c_m$ [/mm] sind linear unabhängig sind.

Bezug
                
Bezug
Basis von Vektorräumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:03 Mi 10.01.2018
Autor: Tobikall

Ok danke schonmal nur liegt hier genau mein Problem :(.
Ich bin mir unsicher wie ich genau den Beweis notieren kann und soll, wenn du mir evtl. nur den Ansatz gibts, sodass ich weitermachen kann wäre das super.

Bezug
                        
Bezug
Basis von Vektorräumen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 Mi 10.01.2018
Autor: Gonozal_IX

Hiho,

> Ok danke schonmal nur liegt hier genau mein Problem :(.
>  Ich bin mir unsicher wie ich genau den Beweis notieren
> kann und soll, wenn du mir evtl. nur den Ansatz gibts,
> sodass ich weitermachen kann wäre das super.

fred hat doch eigentlich bereits alles hingeschrieben…

Zeige: $(v,w)$ lässt sich als Linearkombination schreiben von [mm] $b_1,...,b_n,c_1,...c_m [/mm] $

1.) Es ist $(v,w) = (v,0) + (0,w)$.

2.) Nun ist $v [mm] \in [/mm] V$ und [mm] $x_1,\ldots,x_n$ [/mm] eine Basis von V, daher lässt sich v schreiben als $v = [mm] \ldots$ [/mm] und damit $(v,0) = [mm] (\ldots,0) [/mm] = [mm] \ldots$ [/mm] (hier sollte eine Linearkombination der [mm] $b_i$'s [/mm] stehen).

3.) Nun ist $w [mm] \in [/mm] W$ und [mm] $y_1,\ldots,y_n$ [/mm] eine Basis von W, daher lässt sich w schreiben als $w = [mm] \ldots$ [/mm] und damit $(0,w) = [mm] (0,\ldots) [/mm] = [mm] \ldots$ [/mm] (hier sollte eine Linearkombination der [mm] $c_i$'s [/mm] stehen).

4.) Aus 1.) 2.) und 3.) folgt dann (v,w) = [mm] \ldots [/mm] (hier steht dann eine Linearkombination von [mm] $b_1,...,b_n,c_1,...c_m [/mm] $)

Für die lineare Unabhängigkeit nenne erst mal die Definition davon, dann sehen wir weiter.

Gruß,
Gono





Bezug
                                
Bezug
Basis von Vektorräumen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:50 Mi 10.01.2018
Autor: Tobikall

Danke für die Hilfe es hat geklappt und ich habe die Aufgabe gelöst!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de