www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Berührung einer Geraden
Berührung einer Geraden < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Berührung einer Geraden: Ansatzfindung
Status: (Frage) beantwortet Status 
Datum: 12:50 Mo 10.09.2012
Autor: Lewser

Aufgabe
y=b*ln(a*x)

a und b sollen so dimensioniert werden, dass sie die Gerade y=x im Punkt P (2;2) berührt.

Mir fehlt ein Ansatz zu dieser Aufgabe. Ich kann mir grafisch vorstellen, wie das Gebilde aussieht. Leider hört es damit schon auf. Hat jemand einen Hinweis?

        
Bezug
Berührung einer Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 12:56 Mo 10.09.2012
Autor: schachuzipus

Hallo,


> y=b*ln(a*x)
>  
> a und b sollen so dimensioniert werden, dass sie die Gerade
> y=x im Punkt P (2;2) berührt.
>  Mir fehlt ein Ansatz zu dieser Aufgabe. Ich kann mir
> grafisch vorstellen, wie das Gebilde aussieht. Leider hört
> es damit schon auf. Hat jemand einen Hinweis?

Der Punkt [mm]P[/mm] ist Punkt des Graphen von [mm]f[/mm] mit [mm]f(x)=b\ln(ax)[/mm], also [mm]f(2)=2[/mm]

Weiter ist die Steigung in diesem Punkt wie groß?

Damit hast du deine 2.te Bestimmungsgleichung und kannst [mm]a,b[/mm] bestimmen.

Gruß

schachuzipus


Bezug
                
Bezug
Berührung einer Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:56 Mo 10.09.2012
Autor: Lewser

Also würde gelten 2=b*ln(2a) und die Steigung wäre die 1. Ableitung von y=b*ln(a*x).

Das wäre, wenn ich mich nicht verrechnet habe, [mm] f'(x)=\bruch{b}{a}. [/mm]

Dann könnte ich erneut den Punkt P einsetzen und hätte b=2a.

Das könnte ich in die Stammfunktion einsetzen und muss peinlich berührt fragen, wie ich 2=2a*ln(2a) nach a auflösen kann, sofern mein Gedankengang überhaupt richtig ist und ich mich beim Ableiten nicht verrechnet habe.
Kann das jemand überprüfen und mir erneut einen Hinweis geben?

Bezug
                        
Bezug
Berührung einer Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Mo 10.09.2012
Autor: fred97


> Also würde gelten 2=b*ln(2a) und die Steigung wäre die 1.
> Ableitung von y=b*ln(a*x).
>  
> Das wäre, wenn ich mich nicht verrechnet habe,
> [mm]f'(x)=\bruch{b}{a}.[/mm]

nein.  [mm][mm] f'(x)=\bruch{b}{x} [/mm]


>  
> Dann könnte ich erneut den Punkt P einsetzen und hätte
> b=2a.

Nein. Da der Graph von f die Gerade mit der Gl y=x in (2,2) berührt, ist

           f'(2)=1, also 1=b/2

>  
> Das könnte ich in die Stammfunktion einsetzen und muss
> peinlich berührt fragen, wie ich 2=2a*ln(2a) nach a
> auflösen kann, sofern mein Gedankengang überhaupt richtig
> ist und ich mich beim Ableiten nicht verrechnet habe.
>  Kann das jemand überprüfen und mir erneut einen Hinweis
> geben?

Der Graph von f und die Gerade mit der Gl. gehen durch (2,2), also ist

                    f(2)=2,

somit:  2=b*ln(2a).

Wegen b=2 folgt: 2=2*ln(2a) oder: ln(2a)=1

Jetzt löse nach a auf

FRED


Bezug
                                
Bezug
Berührung einer Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:26 Mo 10.09.2012
Autor: Lewser

Wo ist mein Fehler bei der Ableitung?

Ich habe b stehengelassen, da es eine Konstante ist. die Ableitung von ln(ax) ist innere mal äussere Ableitung:
[mm] x*\bruch{1}{ax} [/mm] und somit [mm] y'=b*\bruch{x}{ax} [/mm] also [mm] y'=\bruch{b}{a} [/mm] ... wo ist mein Fehler?

Und woher kommt f'(2)=1 ?

Tut mir leid, ich stehe irgendwie auf dem Schlauch.

Bezug
                                        
Bezug
Berührung einer Geraden: Hinweise
Status: (Antwort) fertig Status 
Datum: 20:33 Mo 10.09.2012
Autor: Loddar

Hallo Lewser!


Beginnen wir mit der letzten Frage: was ist denn die Ableitung von $g(x) \ = \ x$ ?
Dann sollte auch klar sein, wo das $f'(2) \ = \ g'(2) \ [mm] \red{= \ 1}$ [/mm] herkommt.


Zu der Ableitung: Du leitest doch nach der Variablen $x_$ ab. Somit ergibt sich mittels MBKettenregel:

$f'(x) \ =\ [mm] b*\bruch{1}{a*x}*a [/mm] \ = \ [mm] \bruch{b}{x}$ [/mm] .


Gruß
Loddar


Bezug
                                                
Bezug
Berührung einer Geraden: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:43 Mo 10.09.2012
Autor: Lewser

Oh man ... doppeltes "aua".

Dass x abgeleitet 1 ist sollte einem klar sein, nur leider wird das nie passieren, wenn an im Kopf eine 2 stehen hat, weil man vorher schon Werte eingesetzt hat.
Und zu meinem anderen Fehler. Ja, tatsächlich sollte ich nach x ableiten und nicht nach a.

Vielen Dank euch allen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de