www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Differentialformen integrieren
Differentialformen integrieren < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Differentialformen integrieren: Tipp
Status: (Frage) beantwortet Status 
Datum: 16:15 Mo 26.01.2015
Autor: Rocky14

Aufgabe
Gegeben sei die Abbildung [mm] \phi :\IR^2 \to \IR^3, \phi(x,y)=(x,y,xy). [/mm] Berechnen Sie das Integral [mm] \integral_{x^2+y^2<1}{\phi} [/mm] * w für w = x dx [mm] \wedge [/mm] dz - y dy [mm] \wedge [/mm] dz


Hallo Leute,
um obige Aufgabe zu lösen, muss ich ja zunächst einmal [mm] \phi [/mm] * w berechnen - doch daran scheitert es leider schon bei mir.
Ich habe bisher:

[mm] \phi [/mm] * w = [mm] w(\phi) [/mm]
= [mm] \phi_{1} d\phi_{1} \wedge d\phi_{3} [/mm] - [mm] \phi_{2} d\phi_{2} \wedge d\phi_{3} [/mm]
= x(1dx) [mm] \wedge [/mm] (ydz) - y(1dy) [mm] \wedge [/mm] (xdz)
= xy [mm] dx\wedge [/mm] dz - xy dy [mm] \wedge [/mm] dz

Stimmt das so? Ich bin mir sehr unsicher und habe das anhand eines Beispiels aus dem Internet gemacht. Allerdings hatten dort die [mm] \phi's [/mm] nur [mm] x_{1},x_{2} [/mm] und die w's nur [mm] y_{1},y_{2}. [/mm] Bei meinem Beispiel kommt ja in beiden Formen sowohl x als auch y vor..... Ich erkenne noch keine richtige Regel.

Wie berechne ich davon dann das Integral? Es gilt ja: Ist [mm] \phi: [/mm] U [mm] \to [/mm] V ein orientierungstreuer Diffeomorphismus und w eine integrierbare Top-Form auf V. Dann ist auch [mm] \phi [/mm] * w intbar und es gilt [mm] \integral_{U} \phi [/mm] * w = [mm] \integral_{V} [/mm] w. Bringt mich das irgendwie weiter?

Vielen Dank schonmal im Voraus für eure Hilfe !

        
Bezug
Differentialformen integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 17:54 Mo 26.01.2015
Autor: MathePower

Hallo Rocky14,

> Gegeben sei die Abbildung [mm]\phi :\IR^2 \to \IR^3, \phi(x,y)=(x,y,xy).[/mm]
> Berechnen Sie das Integral [mm]\integral_{x^2+y^2<1}{\phi}[/mm] * w
> für w = x dx [mm]\wedge[/mm] dz - y dy [mm]\wedge[/mm] dz
>  Hallo Leute,
>  um obige Aufgabe zu lösen, muss ich ja zunächst einmal
> [mm]\phi[/mm] * w berechnen - doch daran scheitert es leider schon
> bei mir.
>  Ich habe bisher:
>  
> [mm]\phi[/mm] * w = [mm]w(\phi)[/mm]
> = [mm]\phi_{1} d\phi_{1} \wedge d\phi_{3}[/mm] - [mm]\phi_{2} d\phi_{2} \wedge d\phi_{3}[/mm]
>  
> = x(1dx) [mm]\wedge[/mm] (ydz) - y(1dy) [mm]\wedge[/mm] (xdz)
>  = xy [mm]dx\wedge[/mm] dz - xy dy [mm]\wedge[/mm] dz
>  


Da z=x*y ist [mm]dz=y \ dx \ + x \ dy[/mm]

Dann hast Du hier stehen:

[mm]\phi \* w =x \ dx \wedge \left(y \ dx \ + x \ dy \right) - y \ dy \wedge \left(y \ dx \ + x \ dy \right)[/mm]

Dies ist zunächst zu berechnen.


> Stimmt das so? Ich bin mir sehr unsicher und habe das
> anhand eines Beispiels aus dem Internet gemacht. Allerdings
> hatten dort die [mm]\phi's[/mm] nur [mm]x_{1},x_{2}[/mm] und die w's nur
> [mm]y_{1},y_{2}.[/mm] Bei meinem Beispiel kommt ja in beiden Formen
> sowohl x als auch y vor..... Ich erkenne noch keine
> richtige Regel.
>  
> Wie berechne ich davon dann das Integral? Es gilt ja: Ist
> [mm]\phi:[/mm] U [mm]\to[/mm] V ein orientierungstreuer Diffeomorphismus und
> w eine integrierbare Top-Form auf V. Dann ist auch [mm]\phi[/mm] * w
> intbar und es gilt [mm]\integral_{U} \phi[/mm] * w = [mm]\integral_{V}[/mm]
> w. Bringt mich das irgendwie weiter?
>  
> Vielen Dank schonmal im Voraus für eure Hilfe !


Gruss
MathePower

Bezug
                
Bezug
Differentialformen integrieren: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:16 Mo 26.01.2015
Autor: Rocky14

> [mm]\phi \* w =x \ dx \wedge \left(y \ dx \ + x \ dy \right) - y \ dy \wedge \left(y \ dx \ + x \ dy \right)[/mm]
>  
> Dies ist zunächst zu berechnen.

Okay... Dann habe ich also
xy dx [mm] \wedge [/mm] dx + [mm] x^2 [/mm] dx [mm] \wedge [/mm] dy - [mm] y^2 [/mm] dy [mm] \wedge [/mm] dx - yx dy [mm] \wedge [/mm] dy
= [mm] x^2 [/mm] dx [mm] \wedge [/mm] dy - [mm] y^2 [/mm] dy [mm] \wedge [/mm] dx
= [mm] x^2 [/mm] dx [mm] \wedge [/mm] dy + [mm] y^2 [/mm] dx [mm] \wedge [/mm] dy
= [mm] (x^2 [/mm] + [mm] y^2) [/mm] dx [mm] \wedge [/mm] dy

Und nun?

Bezug
                        
Bezug
Differentialformen integrieren: Antwort
Status: (Antwort) fertig Status 
Datum: 00:52 Di 27.01.2015
Autor: MathePower

Hallo Rocky14,



>  > [mm]\phi \* w =x \ dx \wedge \left(y \ dx \ + x \ dy \right) - y \ dy \wedge \left(y \ dx \ + x \ dy \right)[/mm]

>  
> >  

> > Dies ist zunächst zu berechnen.
>  
> Okay... Dann habe ich also
>  xy dx [mm]\wedge[/mm] dx + [mm]x^2[/mm] dx [mm]\wedge[/mm] dy - [mm]y^2[/mm] dy [mm]\wedge[/mm] dx - yx
> dy [mm]\wedge[/mm] dy
>  = [mm]x^2[/mm] dx [mm]\wedge[/mm] dy - [mm]y^2[/mm] dy [mm]\wedge[/mm] dx
>  = [mm]x^2[/mm] dx [mm]\wedge[/mm] dy + [mm]y^2[/mm] dx [mm]\wedge[/mm] dy
>  = [mm](x^2[/mm] + [mm]y^2)[/mm] dx [mm]\wedge[/mm] dy
>  
> Und nun?


Dies entspricht folgendem  Integral:

[mm]\integral_{x^{2}+y^{2}<1}^{}}x^{2}+y^{2}} \ dx \ dy [/mm]


Gruss
MathePower

Bezug
                                
Bezug
Differentialformen integrieren: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:01 Di 27.01.2015
Autor: Rocky14

Ach so :D Jetzt hat es klick gemacht!
Danke für deine Hilfe!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de