www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Dreieck im Halbkreis
Dreieck im Halbkreis < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Dreieck im Halbkreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:05 Di 17.01.2017
Autor: rollroll

Aufgabe
Einem Halbkreis soll ein Dreieck mit möglichst großem Inhalt so einbeschrieben werden, dass eine Seite des Dreiecks auf dem Durchmesser des Halbkreises liegt.

Hallo,

also für den Flächeninhalt der minimiert werden soll, gilt: A=1/2 gh.
Was mir allerdings nicht einfallen will, ist wie die Nebenbedingung lautet...

Für eure Hilfe wäre ich dankbar.

        
Bezug
Dreieck im Halbkreis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:46 Di 17.01.2017
Autor: M.Rex

Hallo.

Bedenke, dass die Grundseite hier der Durchmesser ist, und, da das ein Thaleskreis ist, das Dreieck auf dem "Bogenpunkt" rechtwinklig ist. Daher gilt dann auch der Höhensatz des Euklid. Das führt zu [mm] h^{2}=pq, [/mm] und es gilt q=2r-p, also [mm] h^{2}=p\cdot(2r-p) [/mm]

Also gilt
[mm] A=\frac{1}{2}\cdot g\cdot h=\frac{1}{2}\cdot2r\cdot\sqrt{p\cdot(2r-p)}=r\cdot\sqrt{2pr-p^{2}} [/mm]

Diese Formel ist dann nur noch von einem der Hypotenusenabschnitte abhängig, der Radius des Kreises r ist ja fest.

Marius

Bezug
        
Bezug
Dreieck im Halbkreis: Antwort
Status: (Antwort) fertig Status 
Datum: 20:57 Di 17.01.2017
Autor: Steffi21

Hallo, mal ohne Haupt- und Nebenbedingung und ohne Ableitung u.s.w.

[mm] A=\bruch{1}{2}*d*h_d [/mm]

Die Grundseite des Dreiecks, der Durchmesser ist eine feste Größe, ebenso der Faktor [mm] \bruch{1}{2}, [/mm] also kannst Du nur die Höhe verändern, mache Dir eine Skizze und überlege Dir, wann die Höhe maximal wird, wo liegt die Höhe also,

Steffi

Bezug
                
Bezug
Dreieck im Halbkreis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:02 Di 17.01.2017
Autor: rollroll

Naja, wenn die Höhe gerade dem Radius entspricht oder?

Also wäre [mm] A=1/2*r*2r=r^2. [/mm]

Aber auf dem Weg von M.Rex erhalte ich ein anderes Ergebnis (mit Wurzel(3))

Bezug
                        
Bezug
Dreieck im Halbkreis: Antwort
Status: (Antwort) fertig Status 
Datum: 21:13 Di 17.01.2017
Autor: Steffi21

Hallo, die Höhe entspricht dem Radius, also verläuft die Höhe durch den Mittelpunkt des Kreises

[mm] A(p)=r*\wurzel{2*r*p-p^2} [/mm]

[mm] A'(p)=\bruch{r*(2*r-2*p)}{2*\wurzel{2*r*p-p^2}} [/mm]

1. Ableitung gleich Null setzen, also Zähler gleich Null setzen, nix mit Wurzel 3

Steffi





Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 35m 2. Al-Chwarizmi
DiffGlGew/Erstes Integral
Status vor 2h 44m 9. Diophant
UStoc/Stochastische Unabhängigkeit
Status vor 4h 59m 4. Al-Chwarizmi
UAlgGRK/Menge in der Potenz
Status vor 5h 57m 3. mediboi
UBauW/Zuggurtungsprinzip? Synonyme?
Status vor 13h 31m 7. Diophant
STrigoFktn/cos2(x)=sin2(2x)
^ Seitenanfang ^
www.vorhilfe.de