www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwert von einem Winkel
Extremwert von einem Winkel < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwert von einem Winkel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:16 Di 14.01.2014
Autor: ForeverYummy

Aufgabe
[Dateianhang nicht öffentlich]

Ich hab da nochmal eine Frage. Bei dieser Aufgabe verstehe ich leider nicht, wie man auf die Ableitung von der Formel kommt. Irgendwie bringt es mir ja wenig, wenn ich das ausmultipliziere, oder? Könnt ihr mir vielleicht einen Tipp geben?





Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
        
Bezug
Extremwert von einem Winkel: Variable = Winkel alpha
Status: (Antwort) fertig Status 
Datum: 20:32 Di 14.01.2014
Autor: Loddar

Hallo ForeverYummy!


In diesem Falle ist die Variable der Winkel [mm] $\alpha$ [/mm] .
Du musst also nach dieser Variablen ableiten.

Ausmultiplizieren bringt hier wirklich nichts. Der Faktor [mm] $b^2$ [/mm] bleibt beim Ableiten als konstanter Faktor erhalten.


Zudem gilt auch: [mm] $2*\sin(\alpha)*\cos(\alpha) [/mm] \ = \ [mm] \sin(2*\alpha)$ [/mm] .

Damit lässt sich (wenn man mag) Deine Funktion umformen / vereinfachen zu:

[mm] $F(\alpha) [/mm] \ = \ [mm] b^2*\left[\sin(\alpha)+\bruch{1}{2}*\sin(2*\alpha)\right]$ [/mm]


Gruß
Loddar

Bezug
                
Bezug
Extremwert von einem Winkel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:54 Di 14.01.2014
Autor: ForeverYummy

Danke für die schnelle Antwort.

> Ausmultiplizieren bringt hier wirklich nichts. Der Faktor
> [mm]b^2[/mm] bleibt beim Ableiten als konstanter Faktor erhalten.

Heißt das, dass ich beim Ableiten das [mm] b^2 [/mm] als Zahl sehe und es gar nicht wirklich ableite?
Ich hab jetzt mal versucht, den Term in der Klammer abzuleiten und bekomme folgenedes raus:

[mm] cos(\alpha)+cos(\alpha)*cos(\alpha)+sin(\alpha)-sin(\alpha) [/mm]

Bin ich da schonmal auf dem richtigen Weg :D? Und muss ich das [mm] b^2 [/mm] dann einfach mit dem Term multiplizieren? Und wenn ich das dann getan habe und den Term mit 0 goleich setze, wie kann ich das dann ausrechnen? Hab dann ja quasi nur Variablen in meinem Term.

Danke schonmal im Voraus :)

Bezug
                        
Bezug
Extremwert von einem Winkel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:18 Di 14.01.2014
Autor: DieAcht

Hallo,


> Danke für die schnelle Antwort.
>  
> > Ausmultiplizieren bringt hier wirklich nichts. Der Faktor
> > [mm]b^2[/mm] bleibt beim Ableiten als konstanter Faktor erhalten.
>  
> Heißt das, dass ich beim Ableiten das [mm]b^2[/mm] als Zahl sehe
> und es gar nicht wirklich ableite?

[ok]

> Ich hab jetzt mal versucht, den Term in der Klammer
> abzuleiten und bekomme folgenedes raus:
>  
> [mm]cos(\alpha)+cos(\alpha)*cos(\alpha)+sin(\alpha)-sin(\alpha)[/mm]

[notok]

Es gilt nach [mm] \alpha [/mm] abgeleitet:

      [mm] (b^2\cdot{}\left[\sin(\alpha)+\bruch{1}{2}\cdot{}\sin(2\cdot{}\alpha)\right])'=b^2\left[\sin(\alpha)+\bruch{1}{2}\cdot{}\sin(2\cdot{}\alpha)\right]'=b^2(cos(\alpha)+\frac{1}{2}*\cos(2\alpha)*2)=b^2(\cos(\alpha)+\cos(2\alpha)) [/mm]

>  
> Bin ich da schonmal auf dem richtigen Weg :D? Und muss ich
> das [mm]b^2[/mm] dann einfach mit dem Term multiplizieren? Und wenn
> ich das dann getan habe und den Term mit 0 goleich setze,
> wie kann ich das dann ausrechnen? Hab dann ja quasi nur
> Variablen in meinem Term.

$b$ ist nur eine Variable!

Es gilt für eine Funktion $f$ und einer Variable $b$ die Faktorregel:

      $(b*f(x))'=b*f'(x)$

Beispiel für $b=3$:

      [mm] $f(x)=3x\Rightarrow [/mm] f'(x)=(3x)'=3*(x)'=3*1=3$

>  
> Danke schonmal im Voraus :)


DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 11m 6. Tipsi
IntTheo/Flächenmaß berechnen
Status vor 4h 25m 10. HJKweseleit
GraphTheo/Hyperwürfel teilen
Status vor 8h 25m 1. omarco
RT/Z-Transformation
Status vor 8h 47m 3. matux MR Agent
UAlgGRK/Ringerweiterung
Status vor 8h 47m 2. Gonozal_IX
MaßTheo/Fast überall
^ Seitenanfang ^
www.vorhilfe.de