www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Fourier-Transformation" - Fourierkoeffizientenberechnung
Fourierkoeffizientenberechnung < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Fourierkoeffizientenberechnung: F.K. bei halber Grundfreq.
Status: (Frage) beantwortet Status 
Datum: 13:46 Mi 25.02.2015
Autor: Marcel

Hallo zusammen,

folgende Frage ist mir aufgekommen: Angenommen, wir haben ein Signal
$s=s(t)$, welches [mm] $T_0$-periodisch [/mm] ist [mm] ($T_0 [/mm] > 0$ minimal), reellwertig und zudem
sei es durch seine Fourierreihe (überall) darstellbar. Jetzt machen wir
einen "Fehler" und denken, dass das Signal die kleinste Periode [mm] $T=2T_0$ [/mm]
habe. (Der "Fehler" liegt nur darin, dass $T > 0$ nicht minimal ist!)

Sind [mm] $c_k$ [/mm] die komplexen F.K. so, dass

    $s(t) [mm] \equiv \sum_{k=-\infty}^\infty c_k \exp(j [/mm] k [mm] \omega_0 [/mm] t)$

gilt [mm] ($\omega_0=2\pi/T_0 [/mm] $), und nennen wir die F.K. bzgl. [mm] $T=2T_0$ [/mm] mal [mm] $d_k$, [/mm] so
folgt mit [mm] $\omega=\omega_0/2$ [/mm]

    [mm] $d_k=\frac{1}{T}\int_0^T [/mm] s(t) [mm] \exp(-j \cdot [/mm] k [mm] \omega t)dt=\frac{1}{2T_0}\int_0^{2T_0} [/mm] s(t) [mm] \exp(-j \cdot [/mm] k [mm] (\omega_0/2) [/mm] t)dt$

Wie zu erwarten gilt dann offenbar [mm] $d_{2k}=c_k$ [/mm] für alle $k [mm] \in \IZ$. [/mm] Hat aber
jemand eine Idee, wie man (rein rechnerisch?) am besten begründet, dass

    [mm] $d_{2k-1}=\frac{1}{2T_0}\int_0^{2T_0} [/mm] s(t) [mm] \exp(-j \cdot [/mm] k [mm] \omega_0 [/mm] t) [mm] \cdot \exp(j \cdot \tfrac{\omega_0}{2}t)dt$ [/mm]

auch $=0$ sein muss? Mir fällt nämlich nur die Eindeutigkeit der Fourierreihe
ein - geht's auch "rechnerisch" (oder braucht man dann evtl. zusätzliche
Annahmen)?

Falls demnächst niemanden was einfällt, werde ich das Ganze eventuell
doch erstmal rein reell rechnen (also mit den [mm] $a_k$ [/mm] und [mm] $b_k$ [/mm] in der reellen
Fourierreihe).

P.S. Prinzipiell will ich einfach nur rechnerisch begründen, dass, wenn man
bei der Fourierkoeffizientenberechnung eine Grundfrequenz annimmt, die
die "wahre Grundfrequenz" teilt, dann von der Theorie her " viele F.K. sich
zu 0" berechnen lassen. Die F.K. bei "Zwischenfrequenzen, die kein ganzzahliges
Vielfaches der wahren Grundfrequenz" sind, sollten alle verschwinden.
Motivieren will ich das erstmal mit obigem, einfachen Bsp.. Vielleicht sieht
man dann auch von der Rechnung her, dass sich in den anderen Fällen
vieles i.W. einfach übertragen läßt.

Gruß,
  Marcel

        
Bezug
Fourierkoeffizientenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 07:22 Do 26.02.2015
Autor: hanspeter.schmid

Hallo Marcel,

ich würde da die Symmetrie von $s$ und die Antisymmetrie des Fourierkerns für ungerade $k$ ausnützen und so vorgehen:

[mm]d_k=\frac{1}{T}\int_0^T s(t) \exp(-j \cdot k \omega t)dt=\frac{1}{T}\left(\int_0^{T/2} s(t) \exp(-j \cdot k \omega t)dt\;+\;\int_{T/2}^T s(t) \exp(-j \cdot k \omega t)dt\right)[/mm]

und dann ausnützen, dass $s(t)=s(t-T/2)$ ist, und [mm] $\exp(-j \cdot [/mm] k [mm] \omega t)=-\exp(-j \cdot [/mm] k [mm] \omega [/mm] (t-T/2))$ für alle ungeraden $k$ (siehe unten). Dann kannst Du zeigen dass, für ungerade $k$,

[mm]\int_0^{T/2} s(t) \exp(-j \cdot k \omega t)dt=-\int_{T/2}^T s(t) \exp(-j \cdot k \omega t)dt[/mm]

Gruss,
Hanspeter


P.S. [mm]\exp(-j \cdot k \omega (t-\frac{T}{2}))=\exp(-j \cdot k \frac{2\pi}{T} (t-\frac{T}{2}))=\exp(-j \cdot k \frac{2\pi}{T} t) \cdot \exp(j \cdot k \frac{2\pi}{T}\frac{T}{2})=\exp(-j \cdot k \frac{2\pi}{T} \omega t) \cdot \exp(j k \pi)[/mm], und der letzte Ausdruck [mm] $\exp(j [/mm] k [mm] \pi)=\pm1$ [/mm] abhängig davon ob $k$ gerade/ungerade ist.



Bezug
                
Bezug
Fourierkoeffizientenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:24 Do 26.02.2015
Autor: Marcel

Hallo Hanspeter,

> Hallo Marcel,
>  
> ich würde da die Symmetrie von [mm]s[/mm] und die Antisymmetrie des
> Fourierkerns für ungerade [mm]k[/mm] ausnützen und so vorgehen:
>  
> [mm]d_k=\frac{1}{T}\int_0^T s(t) \exp(-j \cdot k \omega t)dt=\frac{1}{T}\left(\int_0^{T/2} s(t) \exp(-j \cdot k \omega t)dt\;+\;\int_{T/2}^T s(t) \exp(-j \cdot k \omega t)dt\right)[/mm]
>  
> und dann ausnützen, dass [mm]s(t)=s(t-T/2)[/mm] ist, und [mm]\exp(-j \cdot k \omega t)=-\exp(-j \cdot k \omega (t-T/2))[/mm]
> für alle ungeraden [mm]k[/mm] (siehe unten). Dann kannst Du zeigen
> dass, für ungerade [mm]k[/mm],
>  
> [mm]\int_0^{T/2} s(t) \exp(-j \cdot k \omega t)dt=-\int_{T/2}^T s(t) \exp(-j \cdot k \omega t)dt[/mm]
>  
> Gruss,
>  Hanspeter
>  
>
> P.S. [mm]\exp(-j \cdot k \omega (t-\frac{T}{2}))=\exp(-j \cdot k \frac{2\pi}{T} (t-\frac{T}{2}))=\exp(-j \cdot k \frac{2\pi}{T} t) \cdot \exp(j \cdot k \frac{2\pi}{T}\frac{T}{2})=\exp(-j \cdot k \frac{2\pi}{T} \omega t) \cdot \exp(j k \pi)[/mm],
> und der letzte Ausdruck [mm]\exp(j k \pi)=\pm1[/mm] abhängig davon
> ob [mm]k[/mm] gerade/ungerade ist.

Danke, ich rechne es mal, und nur, wenn ich noch ein Problem sehe, melde
ich mich diesbezüglich wieder. :-)

Gruß,
  Marcel

Bezug
                
Bezug
Fourierkoeffizientenberechnung: Nachgerechnet: Passt
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 00:14 Fr 27.02.2015
Autor: Marcel

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Hallo Hanspeter,

Danke nochmal für den Tipp. Das einzige, was wirklich relevant ist, ist dann ja,
dass man $\omega=\omega_0/2=\pi/T_0$ einsetzt. Hier einfach mal meine Rechnung
(das "Kürzel" $\left(\int_a^b+\int_b^c\right)\circ (...)dt\right)$ sollte selbsterklärend sein):

Für alle $k \in \IZ$ gilt

    $2T_0*d_{2k-1}=\left(\int_0^{T_0}+\int_{T_0}^{2{T_0}}\right) \circ\left\{ s(t) \exp(-j \omega_0/2(2k-1)t)\right\}dt\right=:I_1+I_2\,.$

Nun gilt

    $I_2=\int_{T_0}^{2{T_0}}(s(t) \exp(-j \omega_0/2\;(2k-1)t)dt=\int_{u=0}^{u={T_0}} \underbrace{s(u+{T_0})}_{=s(u)} \exp(-j \omega_0/2\;(2k-1)u)\;*\exp(-j\underbrace{{T_0}*\omega_0/2}_{=\pi}\,(2k-1))du$

    $=\exp(j(-\pi)*(2k-1))*I_1=(-1)^{2k-1}*I_1=-I_1\,.$

Also

    $2T_0d_{2k-1}=I_1+I_2=I_1-I_1=0$

und damit

    $d_{2k-1}=0$.

Ich denke, dass das so passt. Vielleicht schaut aber nochmal jemand
wegen eventueller kleiner Schludrigkeiten meinerseits drüber (vielleicht
habe ich irgendwo ein $j\,$ vergessen oder ähnliches).

Danke!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Fourier-Transformation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de