www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gewöhnliche Differentialgleichungen" - Gew. aut. DGL - Konvergenz
Gew. aut. DGL - Konvergenz < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Gew. aut. DGL - Konvergenz: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 02:53 Di 21.04.2015
Autor: DudiPupan

Aufgabe
First-oder autonomus initial value problem:
[mm] $$\dot x=f(x),\quad x(0)=x_0,$$ [/mm]
where $f$ is such that the solutions are unique (e.g. [mm] $f\in C^1$). [/mm]
(i) If [mm] $f(x_0)=0$ [/mm] then [mm] $x(t)=x_0$ [/mm] for all $t$.
(ii) If [mm] $f(x_0)\neq [/mm] 0$, then $x(t)$ converges to the first zero left [mm] ($f(x_0)<0$) [/mm] respectively right [mm] ($f(x_0)>0$) [/mm] of [mm] $x_0$. [/mm] If there ist no such zero the solution converges to [mm] $-\infty$, [/mm] respectively [mm] $\infty$. [/mm]


Guten Abend zusammen,

ich muss für eine Präsentation die oben stehenden Aussagen beweisen und bin mir bei (ii) etwas unsicher.

(i) Ist klar. Hier ist ja die Aussage einfach, dass die Ruhelage einer autonomen gew. DGL 1. Ord. schon durch die Nullstellen von $f$ gegeben ist. Dies gilt, da für [mm] $f(x_0)=0$ [/mm] offensichtlich [mm] $x\equiv x_0$ [/mm] (eindeutige) Lösung des AWPs ist.

Bei (ii) habe ich mir folgendes gedacht:
Sei also [mm] $x_0$ [/mm] mit [mm] $f(x_0)<0$ [/mm] und existiere eine Nullstelle [mm] $x^\ast$ [/mm] von $f$ links neben [mm] $x_0$, [/mm] dann gilt natürlich $dx/dt=f(x)<0$ für [mm] $x\in (x^\ast,x_0)$, [/mm] d.h. $x$ fällt streng monoton in diesem Intervall. Damit finden wir ein [mm] $t^\ast$ [/mm] so groß, dass für [mm] $X(t):=x(t)-x^\ast$ [/mm] gilt: [mm] $|n(t)|\ll [/mm] 1$ für [mm] $t>t^\ast$ [/mm] und damit können wir linearisieren (+Taylor) und erhalten
[mm] $$dX(t)/dt\approx X(t)f'(x^\ast)\quad $\Rightarrow X(t)\propto \exp(f'(x^\ast)t)$$ [/mm]
Nun ist es klar, falls $f$ bei [mm] $x^\ast$ [/mm] einen Vorzeichenwechsel hat, damit hier also von - nach + und damit [mm] $f'(x^\ast)<0$, [/mm] womit [mm] $X(t)\to [/mm] 0$ und damit [mm] $x(t)\to x^\ast$ [/mm] für [mm] $t\to \infty$ [/mm] gilt.

Wenn aber nun aber $f$ die $x$-Achse an der Stelle [mm] $x^\ast$ [/mm] nur berührt? Dann funktioniert das oben ja nicht?

Würde mich sehr über Hilfe freuen

Liebe Grüße
DudiPupan

        
Bezug
Gew. aut. DGL - Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 07:04 Di 21.04.2015
Autor: fred97


> First-oder autonomus initial value problem:
>  [mm]\dot x=f(x),\quad x(0)=x_0,[/mm]
>  where [mm]f[/mm] is such that the
> solutions are unique (e.g. [mm]f\in C^1[/mm]).
>  (i) If [mm]f(x_0)=0[/mm] then
> [mm]x(t)=x_0[/mm] for all [mm]t[/mm].
>  (ii) If [mm]f(x_0)\neq 0[/mm], then [mm]x(t)[/mm] converges to the first
> zero left ([mm]f(x_0)<0[/mm]) respectively right ([mm]f(x_0)>0[/mm]) of [mm]x_0[/mm].
> If there ist no such zero the solution converges to
> [mm]-\infty[/mm], respectively [mm]\infty[/mm].
>  
> Guten Abend zusammen,
>  
> ich muss für eine Präsentation die oben stehenden
> Aussagen beweisen und bin mir bei (ii) etwas unsicher.
>  
> (i) Ist klar. Hier ist ja die Aussage einfach, dass die
> Ruhelage einer autonomen gew. DGL 1. Ord. schon durch die
> Nullstellen von [mm]f[/mm] gegeben ist. Dies gilt, da für [mm]f(x_0)=0[/mm]
> offensichtlich [mm]x\equiv x_0[/mm] (eindeutige) Lösung des AWPs
> ist.
>  
> Bei (ii) habe ich mir folgendes gedacht:
>  Sei also [mm]x_0[/mm] mit [mm]f(x_0)<0[/mm] und existiere eine Nullstelle
> [mm]x^\ast[/mm] von [mm]f[/mm] links neben [mm]x_0[/mm], dann gilt natürlich
> [mm]dx/dt=f(x)<0[/mm] für [mm]x\in (x^\ast,x_0)[/mm], d.h. [mm]x[/mm] fällt streng
> monoton in diesem Intervall.

O.K.

>  Damit finden wir ein [mm]t^\ast[/mm] so
> groß, dass für [mm]X(t):=x(t)-x^\ast[/mm] gilt: [mm]|n(t)|\ll 1[/mm]

Was ist n(t) ??????


> für
> [mm]t>t^\ast[/mm] und damit können wir linearisieren (+Taylor) und
> erhalten
>  [mm]dX(t)/dt\approx X(t)f'(x^\ast)\quad $\Rightarrow X(t)\propto \exp(f'(x^\ast)t)[/mm]


Was bedeutet  [mm] X(t)\propto \exp(f'(x^\ast)t) [/mm]  ????


FRED

>  
> Nun ist es klar, falls [mm]f[/mm] bei [mm]x^\ast[/mm] einen Vorzeichenwechsel
> hat, damit hier also von - nach + und damit [mm]f'(x^\ast)<0[/mm],
> womit [mm]X(t)\to 0[/mm] und damit [mm]x(t)\to x^\ast[/mm] für [mm]t\to \infty[/mm]
> gilt.
>
> Wenn aber nun aber [mm]f[/mm] die [mm]x[/mm]-Achse an der Stelle [mm]x^\ast[/mm] nur
> berührt? Dann funktioniert das oben ja nicht?
>  
> Würde mich sehr über Hilfe freuen
>  
> Liebe Grüße
>  DudiPupan


Bezug
                
Bezug
Gew. aut. DGL - Konvergenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 11:04 Di 21.04.2015
Autor: DudiPupan

Halo Fred,

> > First-oder autonomus initial value problem:
>  >  [mm]\dot x=f(x),\quad x(0)=x_0,[/mm]
>  >  where [mm]f[/mm] is such that
> the
> > solutions are unique (e.g. [mm]f\in C^1[/mm]).
>  >  (i) If [mm]f(x_0)=0[/mm]
> then
> > [mm]x(t)=x_0[/mm] for all [mm]t[/mm].
>  >  (ii) If [mm]f(x_0)\neq 0[/mm], then [mm]x(t)[/mm] converges to the first
> > zero left ([mm]f(x_0)<0[/mm]) respectively right ([mm]f(x_0)>0[/mm]) of [mm]x_0[/mm].
> > If there ist no such zero the solution converges to
> > [mm]-\infty[/mm], respectively [mm]\infty[/mm].
>  >  
> > Guten Abend zusammen,
>  >  
> > ich muss für eine Präsentation die oben stehenden
> > Aussagen beweisen und bin mir bei (ii) etwas unsicher.
>  >  
> > (i) Ist klar. Hier ist ja die Aussage einfach, dass die
> > Ruhelage einer autonomen gew. DGL 1. Ord. schon durch die
> > Nullstellen von [mm]f[/mm] gegeben ist. Dies gilt, da für [mm]f(x_0)=0[/mm]
> > offensichtlich [mm]x\equiv x_0[/mm] (eindeutige) Lösung des AWPs
> > ist.
>  >  
> > Bei (ii) habe ich mir folgendes gedacht:
>  >  Sei also [mm]x_0[/mm] mit [mm]f(x_0)<0[/mm] und existiere eine Nullstelle
> > [mm]x^\ast[/mm] von [mm]f[/mm] links neben [mm]x_0[/mm], dann gilt natürlich
> > [mm]dx/dt=f(x)<0[/mm] für [mm]x\in (x^\ast,x_0)[/mm], d.h. [mm]x[/mm] fällt streng
> > monoton in diesem Intervall.
>  
> O.K.
>  
> >  Damit finden wir ein [mm]t^\ast[/mm] so

> > groß, dass für [mm]X(t):=x(t)-x^\ast[/mm] gilt: [mm]|n(t)|\ll 1[/mm]
>
> Was ist n(t) ??????

Oh, das ist ein Tippfehler. Sollte natürlich [mm] $|X(t)|\ll [/mm] 1$ heißen.

>  
>
> > für
> > [mm]t>t^\ast[/mm] und damit können wir linearisieren (+Taylor) und
> > erhalten
>  >  [mm]dX(t)/dt\approx X(t)f'(x^\ast)\quad $\Rightarrow X(t)\propto \exp(f'(x^\ast)t)[/mm]
>  
>
> Was bedeutet  [mm]X(t)\propto \exp(f'(x^\ast)t)[/mm]  ????

Das soll heißen, dass sich $X(t)$ propotrional zu $  [mm] \exp(f'(x^\ast)t)$ [/mm] verhält.

>  
>
> FRED
>  >  
> > Nun ist es klar, falls [mm]f[/mm] bei [mm]x^\ast[/mm] einen Vorzeichenwechsel
> > hat, damit hier also von - nach + und damit [mm]f'(x^\ast)<0[/mm],
> > womit [mm]X(t)\to 0[/mm] und damit [mm]x(t)\to x^\ast[/mm] für [mm]t\to \infty[/mm]
> > gilt.
> >
> > Wenn aber nun aber [mm]f[/mm] die [mm]x[/mm]-Achse an der Stelle [mm]x^\ast[/mm] nur
> > berührt? Dann funktioniert das oben ja nicht?
>  >  
> > Würde mich sehr über Hilfe freuen
>  >  
> > Liebe Grüße
>  >  DudiPupan
>  

Und vielen Dank für deine schnelle Antwort.

Liebe Grüße
Dudi

Bezug
                        
Bezug
Gew. aut. DGL - Konvergenz: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:01 Di 21.04.2015
Autor: DudiPupan


> > > Bei (ii) habe ich mir folgendes gedacht:
>  >  >  Sei also [mm]x_0[/mm] mit [mm]f(x_0)<0[/mm] und existiere eine
> Nullstelle
> > > [mm]x^\ast[/mm] von [mm]f[/mm] links neben [mm]x_0[/mm], dann gilt natürlich
> > > [mm]dx/dt=f(x)<0[/mm] für [mm]x\in (x^\ast,x_0)[/mm], d.h. [mm]x[/mm] fällt streng
> > > monoton in diesem Intervall.

Oder ist es hier vielleicht besser mit Monotonie und Beschränktheit zu argumentieren?

Denn gäbe es hier einen Zeitpunkt [mm] $t^\ast$ [/mm] mit [mm] $x(t^\ast)=x^\ast$, [/mm] dann wäre [mm] $\bar{x}(t):=x(t+t^\ast)$ [/mm] die Lösung der DGL [mm] $\frac{d\bar{x}}{dt}(t)=\frac{dx}{dt}(t+t^\ast)=f(x(t+t^\ast))=f(\bar{x}(t))$ [/mm] und damit müsste nach (i) gelten [mm] $\bar{x}(t)= x^\ast$ [/mm] für alle t und damit auch [mm] $x\equiv x^\ast$. [/mm] Dies ist nun aber ein Widerspruch zu [mm] $f(x_0)\neq [/mm] 0$, da dann [mm] $f(x_0)=f( x^\ast)=0. [/mm]
Damit gilt [mm] $x(t)>x^\ast$ [/mm] und da $x$ für [mm] $x^\ast
Ich denke dieser Ansatz wird sinnvoller sein, als der erste den ich hatte mit der Linearisierung.

Würde mich sehr über ein Feedback freuen

Vielen Dank

Liebe Grüße
Dudi

Bezug
                                
Bezug
Gew. aut. DGL - Konvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 12:20 Mi 22.04.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
                        
Bezug
Gew. aut. DGL - Konvergenz: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 11:20 Mi 22.04.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de