www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Rationale Funktionen" - Grenzwert von zwei Seiten
Grenzwert von zwei Seiten < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwert von zwei Seiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:33 Sa 12.07.2014
Autor: alfonso2020

Hallo,

ich habe folgende Funktion gegeben [mm] f(x)=\bruch{9-x^{2}}{x^{2}-2x-3} [/mm] und habe diese nach Ermittlung des Definitionsbereiches zu [mm] f(x)=-1-\bruch{2}{x+1} [/mm] umgeformt.

Mein Defintionsbereich ist somit :

[mm] D_{f}=(-\infty,-1) \cup [/mm] (-1,3) [mm] \cup (3,\infty) [/mm]

Nun will ich den Grenzwert für a [mm] \in [/mm] R [mm] \cup \D_{f} [/mm] = [mm] \{-\infty,\infty,-1,3\} [/mm]

Nun muss ich die Grenzwerte bestimmen. Dies mache ich für

[mm] \limes_{n\rightarrow\infty} [/mm] f(x)=-1

[mm] \limes_{n\rightarrow\-infty} [/mm] f(x)=-1

[mm] \limes_{n\rightarrow\3} f(x)=-\bruch{3}{2} [/mm]

Nun muss ich noch den Grenzwert für -1 von links und einmal von rechts betrachten. Weshalb ist das so?

Wieso muss ich dies nicht für die 3 ebenfalls machen? Ich hoffe ihr könnt es mir verständlich erklären, damit ich solche Aufgabentypen bewältigen kann.

Danke im Voraus.

        
Bezug
Grenzwert von zwei Seiten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:15 Sa 12.07.2014
Autor: Valerie20


> Hallo,

>

> ich habe folgende Funktion gegeben
> [mm]f(x)=\bruch{9-x^{2}}{x^{2}-2x-3}[/mm] und habe diese nach
> Ermittlung des Definitionsbereiches zu
> [mm]f(x)=-1-\bruch{2}{x+1}[/mm] umgeformt.

[notok]

> Mein Defintionsbereich ist somit :

>

> [mm]D_{f}=(-\infty,-1) \cup[/mm] (-1,3) [mm]\cup (3,\infty)[/mm]

[notok]


Widmen wir uns zunächst mal der Frage nach dem Definitionsbereich:

Was du jetzt tust ist folgendens:

1. Du schaust dir den Zähler deiner Funktion an und erkennst durch eine geschickte Umformung die dritte binomische Formel (Tipp: [mm] $9=3^2$).  [/mm]

2. Du berechnest dir die Nullstellen des Nenners und faktorisierst diesen danach. Als Beispiel: Wenn du die Nullstellen zu $3$ und $-1$ berechnest, kannst du das schreiben als [mm] $(x-3)\cdot(x+1)$. [/mm] Dein Definitionsbereich ist nun gleichzeitig der Zahlenraum [mm] $\IR$ [/mm] ohne diese beiden Nullstellen. Warum?: Weil der Nenner numal nicht "0" werden darf.

3. Du schreibst deine Funktion mit den neu gewonnenen Erkenntnissen um und vereinfachst diese. 

4. Du schreibst deine Ergebnisse hier her und wir schauen ob es noch hakt und wo du Hilfe benötigst.

Valerie

Bezug
                
Bezug
Grenzwert von zwei Seiten: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:26 Sa 12.07.2014
Autor: alfonso2020

Den Definitionsbereich sollte ich vorher angeben, bevor ich umforme.

Ich denke, dass ich jetzt weiß, weshalb ich den limes von links und rechts von -1 bilden muss. Das hängt so wie ich jetzt gesehen habe damit zusammen, dass 3 eine hebbare Lücke und -1 eine Polstelle ist. Stimmts ?

Bezug
                        
Bezug
Grenzwert von zwei Seiten: Antwort
Status: (Antwort) fertig Status 
Datum: 19:46 Sa 12.07.2014
Autor: rmix22


> Den Definitionsbereich sollte ich vorher angeben, bevor ich
> umforme.

Ja. Deine Umformung war ja korrekt und auch der Definitionsbereich als Vereinigung von drei beidseitig offenen Intervallen ist nicht falsch, aber ich denke, dass die Schreibweise mittels Mengendifferenz
[mm] $D_f=\IR\backslash\{-1; 3\}$ [/mm]
einfacher und für viele Zwecke übersichtlicher wäre.

  

> Ich denke, dass ich jetzt weiß, weshalb ich den limes von
> links und rechts von -1 bilden muss. Das hängt so wie ich
> jetzt gesehen habe damit zusammen, dass 3 eine hebbare
> Lücke und -1 eine Polstelle ist. Stimmts ?  

Ja, das ist richtig. Allerdings fehlt noch die Begründung, warum du an der Stelle 3 eine hebbare Unstetigkeitsstelle hast. Eine pragmatische Möglichkeit ist, immer den rechts- und linksseitigen Grenzwert zu bilden - stimmen diese überein und sind in der Zielmenge enthalten, dann handelt es sich um eine hebbare Unstetigkeit. Natürlich kannst du auch mit dem kürzbaren Ausdruck $(x-3)$ argumentieren, doch dann müsstest du korrekterweise auch noch prüfen, ob zB 3 nicht eine mehrfache Nullstelle des Nenners ist, ob also nicht auch noch nach dem Kürzen durch $(x-3)$  der Term $(x-3)$ weiterhin abspaltbar ist.
Ist die Stelle nach dem Kürzen keine Unstetigkeitsstelle mehr, ist sie hebbar.

Gruß RMix

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de