www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Grenzwerte
Grenzwerte < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:51 Di 03.07.2012
Autor: D-C

Aufgabe
Hallo,

ich möchte von [mm] \limes_{x\rightarrow\ 0} \bruch{tan(ax)-atan(x)}{asin(x)-sin(ax)} [/mm] für a [mm] \in \IR [/mm] - {-1,0,1} den Grenzwert bestimmen.

Bei Aufgaben wo nur das x vorkam, war die Grenzwertbestimmung eigentlich kein großes Problem bisher. Hier irritiert mich das a jetzt ein wenig.
Kann ich hier einfach mit dem Quotientenkriterium beginnen, also in der Art:

[mm] \bruch{(f'g-fg')}{g^2} [/mm] = [mm] \bruch{(tan(ax)-atan(x))'*(asin(x)-sin(ax)) - (tan(ax)-atan(x)*(asin(ax)-sin(ax))'}{(asin(x)-sin(ax))^2} [/mm]

und dann weiter ableiten und vereinfachen? Oder kann/muss ich vorher noch irgendwas mit dem a machen?

Gruß
D-C

        
Bezug
Grenzwerte: falscher Ansatz
Status: (Antwort) fertig Status 
Datum: 18:55 Di 03.07.2012
Autor: Loddar

Hallo D-C!


Was willst Du denn mit der Quotientenregel erreichen?

Du kannst hier eine MBde l'Hospital-Regel anwenden, da ein unbestimmter Ausdruck der Form [mm] $\bruch{0}{0}$ [/mm] vorliegt.

Das bedeutet aber, dass Du für die Grenzwertbestimmung(!) Zähler und Nenner jeweils separat ableiten musst.


Gruß
Loddar


Bezug
                
Bezug
Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:19 Di 03.07.2012
Autor: D-C

Das würde also bedeuten ?

[mm] \limes_{x\rightarrow\ 0} \bruch{f}{g} [/mm] = [mm] \limes_{x\rightarrow\ 0} \bruch{f'}{g'} [/mm] = [mm] \limes_{x\rightarrow\ 0} \bruch{(tan(ax)-atan(x))'}{(asin(x)-sin(ax))'} [/mm]


mit [mm] tan'=1+tan^2 [/mm] und sin'=cos


[mm] =\limes_{x\rightarrow\ 0} \bruch{1+tan^2(ax)-1+tan^2(x)}{acos(x)-cos(ax)} [/mm]

Bezug
                        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:37 Di 03.07.2012
Autor: schachuzipus

Hallo D-C,


> Das würde also bedeuten ?
>  
> [mm]\limes_{x\rightarrow\ 0} \bruch{f}{g}[/mm] =  [mm]\limes_{x\rightarrow\ 0} \bruch{f'}{g'}[/mm] = [mm]\limes_{x\rightarrow\ 0} \bruch{(tan(ax)-atan(x))'}{(asin(x)-sin(ax))'}[/mm]
>  
>
> mit [mm]tan'=1+tan^2[/mm] und sin'=cos
>  
>
> [mm]=\limes_{x\rightarrow\ 0} \bruch{1+tan^2(ax)-1+tan^2(x)}{acos(x)-cos(ax)}[/mm]

Fast, du musst bei der Ableitung von [mm]\tan(a\cdot{}x)[/mm] aber die Kettenregel beachten! (ebenso bei [mm]\sin(ax)[/mm] --> [mm]a\cdot{}\cos(ax)[/mm])

[mm]\frac{d}{dx}\tan(ax)=a(1+\tan^2(ax))[/mm]

Du bekommst jedenfalls nochmal einen unbestimmten Ausdruck und musst de l'Hôpital noch zweimal anwenden (wenn ich mich auf die Schnelle nicht verrechnet habe) ...


Gruß

schachuzipus


Bezug
                                
Bezug
Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:56 Di 03.07.2012
Autor: D-C


> Fast, du musst bei der Ableitung von [mm]\tan(a\cdot{}x)[/mm] aber
> die Kettenregel beachten! (ebenso bei [mm]\sin(ax)[/mm] -->
> [mm]a\cdot{}\cos(ax)[/mm])
>  
> [mm]\frac{d}{dx}\tan(ax)=a(1+\tan^2(ax))[/mm]
>  
> Du bekommst jedenfalls nochmal einen unbestimmten Ausdruck
> und musst de l'Hôpital noch zweimal anwenden (wenn ich
> mich auf die Schnelle nicht verrechnet habe) ...
>  
>
> Gruß
>  
> schachuzipus
>  

Also?

[mm] \limes_{x\rightarrow\ 0} \bruch{a*(1+tan^2(ax))-1+tan^2(x)}{acos(x)-a*(cos(ax))} [/mm]

und dann noch die Kettenregel? Was wäre denn hier dann mein f und g für
(f [mm] \circ [/mm] g)'(x) = f'(g(x)*g'(x)) ?

Gruß
D-C

Bezug
                                        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 20:55 Di 03.07.2012
Autor: MathePower

Hallo D-C,

> > Fast, du musst bei der Ableitung von [mm]\tan(a\cdot{}x)[/mm] aber
> > die Kettenregel beachten! (ebenso bei [mm]\sin(ax)[/mm] -->
> > [mm]a\cdot{}\cos(ax)[/mm])
>  >  
> > [mm]\frac{d}{dx}\tan(ax)=a(1+\tan^2(ax))[/mm]
>  >  
> > Du bekommst jedenfalls nochmal einen unbestimmten Ausdruck
> > und musst de l'Hôpital noch zweimal anwenden (wenn ich
> > mich auf die Schnelle nicht verrechnet habe) ...
>  >  
> >
> > Gruß
>  >  
> > schachuzipus
>  >  
>
> Also?
>  
> [mm]\limes_{x\rightarrow\ 0} \bruch{a*(1+tan^2(ax))-1+tan^2(x)}{acos(x)-a*(cos(ax))}[/mm]
>  

HIer fehlt doch ein "a":

[mm]\limes_{x\rightarrow\ 0} \bruch{a*(1+tan^2(ax))-\red{a}*\left(1+tan^2(x)\right)}{acos(x)-a*(cos(ax))}[/mm]


> und dann noch die Kettenregel? Was wäre denn hier dann
> mein f und g für
> (f [mm]\circ[/mm] g)'(x) = f'(g(x)*g'(x)) ?
>  


Vereinfache zunächst obigen Ausdruck.

Prüfe dann, ob es sich wieder um einen unbestimmten Ausdruck handelt.


> Gruß
>  D-C


Gruss
MathePower

Bezug
                                                
Bezug
Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:05 Di 03.07.2012
Autor: D-C


> HIer fehlt doch ein "a":
>  
> [mm]\limes_{x\rightarrow\ 0} \bruch{a*(1+tan^2(ax))-\red{a}*\left(1+tan^2(x)\right)}{acos(x)-a*(cos(ax))}[/mm]
>  
>
> > und dann noch die Kettenregel? Was wäre denn hier dann
> > mein f und g für
> > (f [mm]\circ[/mm] g)'(x) = f'(g(x)*g'(x)) ?
>  >  
>
>
> Vereinfache zunächst obigen Ausdruck.
>  
> Prüfe dann, ob es sich wieder um einen unbestimmten
> Ausdruck handelt.
>  
> Gruss
>  MathePower

Darf ich dafür eigentlich das a auf folgende Art "rausziehen" ?

a * [mm] \limes_{x\rightarrow\ o} \bruch{1+tan^2(ax)-(1+tan^2(x))}{cos(x)-cos(ax)} [/mm] = a * [mm] \limes_{x\rightarrow\ o} \bruch{tan^2(ax)-tan^2(x)}{cos(x)-cos(ax)} [/mm]

Gruß
D-C

Bezug
                                                        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 22:13 Di 03.07.2012
Autor: schachuzipus

Hallo nochmal,



> Darf ich dafür eigentlich das a auf folgende Art
> "rausziehen" ?
>  
> a * [mm]\limes_{x\rightarrow\ o} \bruch{1+tan^2(ax)-(1+tan^2(x))}{cos(x)-cos(ax)}[/mm]

Wie das denn?

Du kannst a doch in Zähler und Nenner ausklammern und dann kürzen ...

> = a * [mm]\limes_{x\rightarrow\ o} \bruch{tan^2(ax)-tan^2(x)}{cos(x)-cos(ax)}[/mm]
>  
> Gruß
>  D-C

LG

schachuzipus


Bezug
                                                                
Bezug
Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:42 Di 03.07.2012
Autor: D-C


> Du kannst a doch in Zähler und Nenner ausklammern und dann
> kürzen ...
>  
> > = a * [mm]\limes_{x\rightarrow\ o} \bruch{tan^2(ax)-tan^2(x)}{cos(x)-cos(ax)}[/mm]
> LG
>  
> schachuzipus
>  

Also bleibt dann noch:

[mm] \limes_{x\rightarrow\ o} \bruch{tan^2(ax)-tan^2(x)}{cos(x)-cos(ax)} [/mm]

und dann nochmal l'hospital anwenden?

Gruß
D-C

Bezug
                                                                        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 00:09 Mi 04.07.2012
Autor: Fulla

Hallo D-C,

> > Du kannst a doch in Zähler und Nenner ausklammern und dann
> > kürzen ...
>  >  
> > > = a * [mm]\limes_{x\rightarrow\ o} \bruch{tan^2(ax)-tan^2(x)}{cos(x)-cos(ax)}[/mm]
>  
> > LG
>  >  
> > schachuzipus
>  >  
>
> Also bleibt dann noch:
>
> [mm]\limes_{x\rightarrow\ o} \bruch{tan^2(ax)-tan^2(x)}{cos(x)-cos(ax)}[/mm]
>  
> und dann nochmal l'hospital anwenden?

Vorher musst du überlegen, ob du de l'Hostpital anwenden DARFST. Aber du hast Glück, denn an der Stelle x=0 gibt das "[mm]\frac{0}{0}[/mm]", also nochmal ableiten und wieder schauen, was rauskommt bzw. ob du de l'Hospital nochmach brauchst bzw. verwenden darfst.


Lieben Gruß,
Fulla


Bezug
                                                                                
Bezug
Grenzwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:49 Mi 04.07.2012
Autor: D-C

Ok, dann versuch ichs mal : )

[mm] \limes_{x\rightarrow\ o} \bruch{tan^2(ax)-tan^2(x)}{cos(x)-cos(ax)} [/mm] = [mm] \limes_{x\rightarrow\ o} \bruch{\bruch{a*2sin(ax)}{cos^3(x)}- \bruch{2sin(x)}{cos^3(x)}}{-sin(x)+a*(sin(ax))} [/mm] = [mm] \limes_{x\rightarrow\ o} [/mm] ( [mm] \bruch{a*2sin(ax)}{cos^3(x)}- \bruch{2sin(x)}{cos^3(x)} [/mm] ) * [mm] \bruch{a*(sin(ax)-sin(x))}{1} [/mm]

Gruß
D-C

Bezug
                                                                                        
Bezug
Grenzwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:22 Mi 04.07.2012
Autor: reverend

Hallo D-C,

das sieht ein bisschen kraus aus.

> Ok, dann versuch ichs mal : )
>  
> [mm]\limes_{x\rightarrow\ o} \bruch{tan^2(ax)-tan^2(x)}{cos(x)-cos(ax)}[/mm] = [mm]\limes_{x\rightarrow\ o} \bruch{\bruch{a*2sin(ax)}{cos^3(\red{a}x)}- \bruch{2sin(x)}{cos^3(x)}}{-sin(x)+a*(sin(ax))}[/mm]

Das kleine rote a fehlte noch, sonst ok.

> = [mm]\limes_{x\rightarrow\ o}[/mm] ( [mm]\bruch{a*2sin(ax)}{cos^3(x)}- \bruch{2sin(x)}{cos^3(x)}[/mm] ) * [mm]\bruch{a*(sin(ax)-sin(x))}{1}[/mm]

Nein, so ist das nicht umzuformen. Um ehrlich zu sein, lässt sich da auch nichts mehr vereinfachen, solange a unbekannt ist.

Dafür hast Du wieder einen Bruch, der für [mm] x\to0 [/mm] die Form [mm] \bruch{0}{0} [/mm] annimmt. Also kann man l'Hospital noch einmal anwenden. Das wird aber langsam ungemütlich, im Zähler jedenfalls.

Noch ein Tipp zum Formeleditor: er funktioniert besser, wenn Du möglichst wenige Leerzeichen eingibst. Große Klammern gehen mit der Eingabe \left( bzw. \right).
\left(s-\bruch{p}{q}\right) ergibt also [mm] \left(s-\bruch{p}{q}\right) [/mm]

Grüße
reverend



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de