www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Grenzwerte Bestimmen
Grenzwerte Bestimmen < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grenzwerte Bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:48 Fr 18.04.2014
Autor: Coxy

Aufgabe
Bestimme folgenden Grenzwerte

lim x->0
[mm] \bruch{3x^2+2x-5}{7x^2+2x}*(1+x)^{\bruch{1}{x}}*sin(x) [/mm]

Ich habe zu erst einmal eingesetzte und festgestellt das ich den unbestimmten Ausdruck [mm] \infty*1*0 [/mm] erhalte
soweit ich weiß muss ich nun die Regel von L°Hospital anwenden
und alles separat voneinander ableiten
[mm] \bruch{6x+2}{14x+2}*-cos(x) [/mm]
nur wie leite ich das [mm] (1+x)^{\bruch{1}{x}} [/mm] ab?

        
Bezug
Grenzwerte Bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 19:59 Fr 18.04.2014
Autor: MathePower

Hallo Coxy,

> Bestimme folgenden Grenzwerte
>  lim x->0
>  [mm]\bruch{3x^2+2x-5}{7x^2+2x}*(1+x)^{\bruch{1}{x}}*sin(x)[/mm]
>  
> Ich habe zu erst einmal eingesetzte und festgestellt das
> ich den unbestimmten Ausdruck [mm]\infty*1*0[/mm] erhalte
>  soweit ich weiß muss ich nun die Regel von L°Hospital
> anwenden
>  und alles separat voneinander ableiten
>  [mm]\bruch{6x+2}{14x+2}*-cos(x)[/mm]
>  nur wie leite ich das [mm](1+x)^{\bruch{1}{x}}[/mm] ab?


Zuerst ist doch der obige Ausdruck als Bruch darzustellen:
[mm]\bruch{z\left(x\right)}{n\left(x\right)}[/mm] und dann Zähler und Nenner getrennt abzuleiten.

Zur Ableitung von [mm](1+x)^{\bruch{1}{x}}[/mm].
Zu diesem Zweck schreibst Du diesen Ausdruck etwas um:

[mm](1+x)^{\bruch{1}{x}}=e^{\bruch{1}{x}*\ln\left(1+x\right)}[/mm]


Gruss
MathePower

Bezug
        
Bezug
Grenzwerte Bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:22 Fr 18.04.2014
Autor: Sax

Hi,

ohne l'Hospital :

$ f(x)= [mm] \bruch{3x^2+2x-5}{7x+2}\cdot{}(1+x)^{\bruch{1}{x}}\cdot{}\bruch{sin(x)}{x} [/mm] $

Damit bist du das Problem des ersten Faktors los.
Dein zweites Problem löst du durch einen Blick ins Skript : der Grenzwert des zweiten Faktors ist nicht 1.
Der dritte Faktor hat ebenfalls einen bekannten Grenzwert.

Grenzwertsatz, fertig.

Gruß Sax.

Bezug
                
Bezug
Grenzwerte Bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:52 Fr 18.04.2014
Autor: Coxy

Also der erste Faktor geht gehen [mm] \bruch{-5}{2} [/mm]
der zweite Faktor geht gegen [mm] \infty [/mm]
beim 3 Faktor benutzt man l hospital und kommt auf [mm] \bruch{cos(x)}{1} [/mm] was dann gegen 1 geht
also ist der Grenzwert
[mm] \bruch{-5}{2}*\infty*1 [/mm]
stimmt das?

Bezug
                        
Bezug
Grenzwerte Bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 21:11 Fr 18.04.2014
Autor: DieAcht

Hallo Coxy,


> Also der erste Faktor geht gehen [mm]\bruch{-5}{2}[/mm]

Ja, für [mm] $x\to [/mm] 0$ stimmt das. [ok]

>  der zweite Faktor geht gegen [mm]\infty[/mm]

Nein. [notok]

Hast du mal in deinem Skript nachgeschaut? Ansonsten zeige

      [mm] \lim_{x\to 0}(1+x)^{\frac{1}{x}}=e [/mm]

mit dem Tipp von MathePower. Ein weiterer Tipp: L'Hôpital.

>  beim 3 Faktor benutzt man l hospital und kommt auf
> [mm]\bruch{cos(x)}{1}[/mm] was dann gegen 1 geht

Ja, für [mm] $x\to [/mm] 0$ stimmt das, aber das geht auch ohne L'Hôpital.

      [mm] \lim_{x\to 0}\frac{\sin(x)-0}{x-0}=\sin'(0)=\cos(0)=1. [/mm]

>  also ist der Grenzwert
>  [mm]\bruch{-5}{2}*\infty*1[/mm]
>  stimmt das?

Nein. [notok]

Das Ergebnis ist natürlich dementsprechend falsch, aber die
Begründung liefern hier die Grenzwertsätze und das musst du
dazuschreiben!


Gruß
DieAcht


Bezug
                                
Bezug
Grenzwerte Bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:08 Fr 18.04.2014
Autor: Coxy

Okay also
wäre mein Ergebnis
[mm] \bruch{-5}{2}*e*1 [/mm] also insgesamt [mm] \brucht{-5e}{2} [/mm]

Eine Frage habe ich aber noch wieso ist
[mm] \lim_{x\to 0}(1+x)^{\frac{1}{x}}=e [/mm] ??

1+x geht doch gegen 1 und egal wie groß oder klein der Exponent ist, es bleibt doch 1?

Bezug
                                        
Bezug
Grenzwerte Bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:59 Fr 18.04.2014
Autor: DieAcht


> Okay also
> wäre mein Ergebnis
>  [mm]\bruch{-5}{2}*e*1[/mm] also insgesamt [mm]\brucht{-5e}{2}[/mm]

Ja, mit der Begründung der Grenzwertsätze erhalten wir

      [mm] -\frac{5}{2}e $(x\to [/mm] 0)$.

> Eine Frage habe ich aber noch wieso ist
>  [mm]\lim_{x\to 0}(1+x)^{\frac{1}{x}}=e[/mm] ??

Nicht nach dem Grund fragen, sondern beweisen. Dazu hast du
bereits zwei Tipps bekommen.

> 1+x geht doch gegen 1 und egal wie groß oder klein der
> Exponent ist, es bleibt doch 1?

Nein. [notok]

Hier ein sehr bekanntes Beispiel, welches in deinem Skript steht:

      [mm] \lim_{n\to\infty}\left(1+\frac{x}{n}\right)^n=e^x\not=1 [/mm] für alle [mm] x\in\IR. [/mm]

Vielleicht noch eine direkte Anwendung dazu:

Aus

      [mm] a_n:=\frac{1}{n} [/mm]

ist eine Nullfolge, folgt nicht

      [mm] \red{\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=1} [/mm] (sondern?).

Bezug
                                                
Bezug
Grenzwerte Bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:10 Fr 18.04.2014
Autor: Coxy

[mm] \red{\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=1} [/mm] ist falsch
[mm] \red{\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e} [/mm] ist richtig oder?

ich hab immer noch keine Ahnung wie man das beweisen soll.
Ein Ansatz wäre sehr hilfreich.

Bezug
                                                        
Bezug
Grenzwerte Bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 23:17 Fr 18.04.2014
Autor: DieAcht


> [mm]\red{\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=1}[/mm] ist
> falsch
>  [mm]\red{\lim_{n\to\infty}\left(1+\frac{1}{n}\right)^n=e}[/mm] ist
> richtig oder?

Ja. [ok]

> ich hab immer noch keine Ahnung wie man das beweisen soll.
>  Ein Ansatz wäre sehr hilfreich.

Den Ansatz hat dir MathePower schon geliefert. Es gilt:

      [mm] (1+x)^{\bruch{1}{x}}=e^{\bruch{1}{x}\cdot{}\ln\left(1+x\right)}. [/mm]

Der dazugehörige Tipp von mir lautete: L'Hôpital.

Jetzt bist aber wirklich du dran!

Bezug
                                                                
Bezug
Grenzwerte Bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:40 Sa 19.04.2014
Autor: Coxy

Also die Ableitung von
[mm] 1+x)^{\bruch{1}{x}}=e^{\bruch{1}{x}\cdot{}\ln\left(1+x\right)} [/mm]
nach L Hospital wäre doch
[mm] \bruch{1}{x} (1+x)^{\bruch{1}{x}-1}=\bruch{1}{x}*ln(1+x)*e^{\bruch{1}{x}*ln(1+x)-1} [/mm]
Nach dem kurzen erhalte ich dann
[mm] (1+x)^{\bruch{1}{x}-1}=ln(1+x)*e^{\bruch{1}{x}*ln(1+x)-1} [/mm]

Wie muss ich dann weiter machen?

Bezug
                                                                        
Bezug
Grenzwerte Bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:05 Sa 19.04.2014
Autor: DieAcht


> Also die Ableitung von
>  
> [mm]1+x)^{\bruch{1}{x}}=e^{\bruch{1}{x}\cdot{}\ln\left(1+x\right)}[/mm]
>  nach L Hospital wäre doch
>  [mm]\bruch{1}{x} (1+x)^{\bruch{1}{x}-1}=\bruch{1}{x}*ln(1+x)*e^{\bruch{1}{x}*ln(1+x)-1}[/mm]
>  
> Nach dem kurzen erhalte ich dann
>  [mm](1+x)^{\bruch{1}{x}-1}=ln(1+x)*e^{\bruch{1}{x}*ln(1+x)-1}[/mm]

Was? [verwirrt]

> Wie muss ich dann weiter machen?

Das ist Unfug. Bei L'Hôpital leiten wir den Zähler sowie
den Nenner getrennt ab. Lies dir den Satz nochmal durch.
Wir haben nicht ohne Grund eine äquivalente Umformung gemacht.

Bezug
                                                                                
Bezug
Grenzwerte Bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:13 Sa 19.04.2014
Autor: Coxy

Ich sehe nur beim Exponenten einen Bruch und den Leite ich ja nicht sofort ab wenn ich l Hospital anwende - ich finde es verwirrend L Hospital auf keinen Bruch anzuwenden bzw. auf eine Zahl mit komplexer Exponenten.

Ich habe eine Frage die mir vielleicht weiter hilft beim Verständnis
ich hab den Grenzwert von
lim x->0 und die funktion [mm] \bruch{sin(x)^2}{x^2*cos(x)} [/mm]
ich möchte nun l Hospital anwenden
und erhalte dann ja wenn ich Zähler und Nenner getrennt ableite folgendes
[mm] \bruch{sin(x)2cos(x)}{2x*(cos(x)+x^2-sin(x)} [/mm]
Was mich ja nicht woran bringt.
Wie muss ich richtig an die Aufgabe ran gehen?


Bezug
                                                                                        
Bezug
Grenzwerte Bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:24 Sa 19.04.2014
Autor: DieAcht


> Ich sehe nur beim Exponenten einen Bruch und den Leite ich
> ja nicht sofort ab wenn ich l Hospital anwende - ich finde
> es verwirrend L Hospital auf keinen Bruch anzuwenden bzw.
> auf eine Zahl mit komplexer Exponenten.
>  
> Ich habe eine Frage die mir vielleicht weiter hilft beim
> Verständnis
>  ich hab den Grenzwert von
>  lim x->0 und die funktion [mm]\bruch{sin(x)^2}{x^2*cos(x)}[/mm]
>  ich möchte nun l Hospital anwenden
>  und erhalte dann ja wenn ich Zähler und Nenner getrennt
> ableite folgendes
>  [mm]\bruch{sin(x)2cos(x)}{2x*(cos(x)+x^2-sin(x)}[/mm]
>  Was mich ja nicht woran bringt.
>  Wie muss ich richtig an die Aufgabe ran gehen?

In diesem Fall könntest du erneut ableiten (Wieso?). Ob es
was bringt habe ich allerdings nicht ausprobiert.

Bei deiner Aufgabe musst du die Stetigkeit der Exponentialfunktion
benutzen und den Exponenten als Bruch darstellen. Es gilt:

      [mm] (1+x)^{\frac{1}{x}}=e^{\frac{1}{x}*\ln(1+x)}=e^{\frac{\ln(1+x)}{x}} [/mm]

      [mm] \Rightarrow\limes_{x\rightarrow 0}(1+x)^{\frac{1}{x}}=\limes_{x\rightarrow 0}e^{\frac{\ln(1+x)}{x}}\overset{\text{Stetigkeit}}{=}e^{\limes_{x\rightarrow 0}\frac{\ln(1+x)}{x}}. [/mm]

Bezug
                                                                                                
Bezug
Grenzwerte Bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:41 Sa 19.04.2014
Autor: Coxy

Also erst einmal vielen Dank für deine Mühe, ich weiß sie wirklich zu schätzen.
Ich verstehe es jedoch immer noch nicht.
Wo kann ich das genauer nachlesen bzw. wo nach muss ich suchen um eine Erklärung dafür zu finden?

Bezug
                                                                                                        
Bezug
Grenzwerte Bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:37 Sa 19.04.2014
Autor: DieAcht


> Also erst einmal vielen Dank für deine Mühe, ich weiß
> sie wirklich zu schätzen.
> Ich verstehe es jedoch immer noch nicht.

Etwas nicht verstehen ist nicht schlimm, aber es wäre besser
du würdest uns genau sagen was du nicht verstanden hast.

> Wo kann ich das genauer nachlesen bzw. wo nach muss ich
> suchen um eine Erklärung dafür zu finden?

Lies dir mal genau die Definition von L'Hôpital []hier durch.

Vielleicht nochmal den anderen Grenzwert genauer ohne die
elegante Lösung (Differenzenquotient), sondern mit L'Hôpital:

Sei

      [mm] f(x):=\frac{\sin(x)}{x}. [/mm]

Zu berechnen ist

      [mm] \lim_{x\to 0}f(x). [/mm]

Wegen

      [mm] f(0)=\frac{\sin(0)}{0}=\frac{0}{0} [/mm]

dürfen wir die Regel von L'Hôpital verwenden und es gilt:

      [mm] \lim_{x\to 0}f(x)=\lim_{x\to 0}\frac{\sin(x)}{x}=\lim_{x\to 0}\frac{(\sin(x))'}{x'}=\lim_{x\to 0}\frac{cos(x)}{1}=\cos(0)=1. [/mm]

Beachte: Wir berechnen nicht

      [mm] (\frac{\sin(x)}{x})', [/mm]

sondern leiten den Nenner und den Zähler einzeln ab.



Nun zurück zum anderen Teil.

      [mm] (1+x)^{\frac{1}{x}}=e^{\frac{1}{x}*\ln(1+x)}=e^{\frac{\ln(1+x)}{x}} [/mm]

      [mm] \Rightarrow\limes_{x\rightarrow 0}(1+x)^{\frac{1}{x}}=\limes_{x\rightarrow 0}e^{\frac{\ln(1+x)}{x}}\overset{\text{Stetigkeit}}{=}e^{\limes_{x\rightarrow 0}\frac{\ln(1+x)}{x}}. [/mm]

Demnach ist nur noch folgendes zu berechnen:

      [mm] \limes_{x\rightarrow 0}\frac{\ln(1+x)}{x}. [/mm]



Du kannst auch mal folgenden Grenzwert berechnen:

      [mm] \limes_{x\rightarrow -1}\frac{2x^3+6x^2+6x+2}{x^2+2x+1}. [/mm]

Tipp: Eine Anwendung von L'Hôpital reicht nicht aus.

Bezug
                                                                                        
Bezug
Grenzwerte Bestimmen: Alternativ
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:01 Sa 19.04.2014
Autor: DieAcht


> lim x->0 und die funktion [mm] \bruch{sin(x)^2}{x^2*cos(x)} [/mm]

Ich würde es ohne L'Hôpital machen, denn es folgt direkt

      [mm] \lim_{x\to 0}\frac{sin(x)^2}{x^2*cos(x)}=\lim_{x\to 0}(\frac{\sin(x)}{x})*(\frac{\sin(x)}{x})*(\frac{1}{\cos(x)})\overset{\text{Grenzwertsatz}}{=}1*1*1=1. [/mm]

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de