www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Integralrechnung Kettenlinie
Integralrechnung Kettenlinie < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integralrechnung Kettenlinie: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:11 Sa 01.11.2014
Autor: LeneBrock

Hallo, ich muss mich zur Zeit mit der Kettenlinie beschäftigen und habe nun eine Frage an einem Punkt, bei dem es im Buch nicht genau erklärt wird.

Es steht dort, dass durch Substitution y'=z ein erstes Mal und nach Rücksubstitution ein zweites Mal integriert werden kann. So kommt man von [mm] \bruch{y''}{\wurzel{1+y'^{2}}} =\bruch{q}{F_{SH}} [/mm]
auf
[mm] y=\bruch{F_{SH}}{q}cosh(\bruch{q}{F_{SH}}x+C_{1})+C_{2} [/mm]

Es wäre sehr nett, wenn mir jemand diese Zwischenschritte aufschreiben könnte, da ich auch nach mehreren Versuchen nicht weitergekommen bin.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Integralrechnung Kettenlinie: Antwort
Status: (Antwort) fertig Status 
Datum: 18:35 Sa 01.11.2014
Autor: chrisno

Ich lese das so:
Die Differentialgleichung lautet:
[mm]\bruch{y''}{\wurzel{1+y'^{2}}} =\bruch{q}{F_{SH}}[/mm]
und die Lösung lautet:

> [mm]y=\bruch{F_{SH}}{q}\cosh\left(\bruch{q}{F_{SH}}x+C_{1}\right)+C_{2}[/mm]

und die Substitution ist ein Hinweis um zu dieser Lösung zu gelangen.

Nun führe die Substitution durch und vergiss y'' nicht.

Bezug
                
Bezug
Integralrechnung Kettenlinie: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 18:38 Sa 01.11.2014
Autor: LeneBrock

Ja so habe ich das auch verstanden, nur weiß ich nicht wie man die beschriebenen Schritte macht.

Bezug
                        
Bezug
Integralrechnung Kettenlinie: Antwort
Status: (Antwort) fertig Status 
Datum: 18:45 Sa 01.11.2014
Autor: fred97

Du hast

$ [mm] \bruch{y''}{\wurzel{1+y'^{2}}} =\bruch{q}{F_{SH}} [/mm] $

Die rechte Seite kürze ich ab mit [mm] a:=\bruch{q}{F_{SH}} [/mm]

Mit z:=y' bekommst Du

   [mm] z'=a*\wurzel{1+z^{2}} [/mm]

Diese DGL löse nun mit Trennung der Veränderlichen

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 32m 12. fred97
SAnaSonst/Stetigkeit
Status vor 2h 37m 2. angela.h.b.
SExpLog/Wachstum und Zerfall
Status vor 12h 42m 3. mathstu
FunkAna/Teilmenge eines Banachraums
Status vor 13h 09m 6. Son
DiffGlGew/Erstes Integral
Status vor 14h 13m 1. gopro
UAnaR1Funk/stetigkeit und grenzwert
^ Seitenanfang ^
www.vorhilfe.de