www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integration" - Integration Funktionenfolge
Integration Funktionenfolge < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration Funktionenfolge: Tipp
Status: (Frage) beantwortet Status 
Datum: 18:58 Mo 02.05.2016
Autor: Stala

Aufgabe
Für k [mm] \in \IN_0 [/mm] sei [mm] f_k [/mm] : ] 0, [mm] \infty] \to \IR [/mm] durch [mm] f_k(x)= x^a(-ln x)^k [/mm] definiert, wobei a eine positive reelle Konstante ist. Zeigen Sie mithilfe vollständiger Unduktion, dass [mm] \limes_{x\rightarrow 0} f_k(x) [/mm] = 0 und [mm] \integral_{0}^{1}{f_k(x) dx} [/mm] = [mm] \bruch{k!}{(a+1)^{k+1}} [/mm]

Hallo liebes Forum,

den ersten Teil konnte ich recht mühelos beweisen mittels Induktion, beim Integral komme ich aber nicht weiter:

Induktionsanfang für k=0
[mm] \integral_{0}^{1}{f_0(x) dx} [/mm] = [mm] \integral_{0}^{1}{x^a dx} [/mm] =  [mm] \bruch{x^{a+1}}{(a+1)} \vert_0^1 [/mm] = [mm] \bruch{1}{(a+1)} [/mm]

was den Anfang liefert.

Aber wie weiter:

[mm] \integral_{0}^{1}{f_{k+1}(x) dx}=\integral_{0}^{1}{x^a(-ln x)^{k+1} dx}=\integral_{0}^{1}{f_{k}(x) (-ln x) dx} [/mm]

Ich habe schon probiert so subtituerien mit x = [mm] e^t [/mm] und/oder pratiell zu integrieren. Aber ich komme einfach auf keine Gleichgun in die ich meine Indukstionsannahme [mm] \integral_{0}^{1}{f_k(x) dx} [/mm] = [mm] \bruch{k!}{(a+1)^{k+1}} [/mm] einsetzen kann.

In welche Richtung kann ich noch denken?
Ein kleiner Tipp zum Auf-Die-Sprünge-Helfen wäre gut ;)

VG und vielen Dank

        
Bezug
Integration Funktionenfolge: Antwort
Status: (Antwort) fertig Status 
Datum: 22:34 Mo 02.05.2016
Autor: chrisno

Du hast es eigentlich schon, nur hat Dir die letzte Umformung den Weg zur Lösung verhüllt.
$ [mm] \integral_{0}^{1}{f_{k+1}(x) dx}=\integral_{0}^{1}{x^a(-ln x)^{k+1} dx}$ [/mm]
Partiell integrieren, mit $u'(x) = [mm] x^{a}$ [/mm] und $v(x) = (-ln [mm] x)^{k+1}$ [/mm]
Dann brauchst Du den Grenzwert um den Term [mm] $[fg]_0^1$ [/mm] verschwinden zu lassen und es bleibt, wie gewünscht, [mm] $\br{k+1}{a+1} \integral_{0}^{1}{f_k(x) dx} [/mm] $ übrig.



Bezug
                
Bezug
Integration Funktionenfolge: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:23 Di 03.05.2016
Autor: Stala

Wald... Bäume... so einfach ;)

DANKE

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integration"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de