www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integration bzgl. eines BM
Integration bzgl. eines BM < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integration bzgl. eines BM: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:25 Mi 21.01.2015
Autor: drossel

Hallo. In meinem Skript steht:
Sei X ein metrischer Raum. Für eine Borelmeßbare einfache Funktion [mm] $f:X\to\mathbb{K}$, $f=\sum_{k=1}^na_k\chi_{A_i}$, [/mm] wobei [mm] $a_i\in \mathbb{K}$, $A_i\in B_X$ ($B_X$=Borelsche-\sigma-Algebra [/mm] von X), wird das Integral von f bezüglich eines signierten/komplexen Maß [mm] $\mu:B_X\to \mathbb{K}$ [/mm] in natürlicher Weise definiert als:
[mm] $\int_Xfd\mu:=\sum_{k=1}^na_k\mu (A_i)$. [/mm]  

1. Ich will wissen wie man zeigt, dass der Wert nicht von der Wahl der Darstellung von f abhängt. Wir haben nur gesagt, dass man das zeigen kann, aber es nicht gemacht.

Weiter aus der Vorlesung:
Ist zunächst [mm] $\mu$ [/mm] ein positives Borelmaß, [mm] $f:X\to\mathbb{R}_{\ge 0}$ [/mm]
Borelmeßbar, so existiert eine Folge von einfachen Funktionen [mm] $(f_n)$ [/mm] mit [mm] $0\le f_n \le f_{n+1}\;\; \forall n\in\mathbb{N}$ [/mm] mit [mm] $\limes_{n\rightarrow\infty} f_n(x)=f(x)$ [/mm] für jedes [mm] $x\in [/mm] X$. Es folgt, dass [mm] $\limes_{n\rightarrow\infty}\int_Xf_nd\mu \in [0,\infty]$ [/mm] existiert und man definiert
[mm] $\int_Xfd\mu:=\limes_{n\rightarrow\infty}\int_Xf_nd\mu [/mm] $, da man zeigen kann, dass der Grenzwert unabhängig von der gewählten monton wachsenden Folge von Trepenfunktionen [mm] $(f_n)$ [/mm] ist.  

2. Auch hierfür "da man zeigen kann, dass der Grenzwert unabhängig von der gewählten monton wachsenden Folge von Trepenfunktionen [mm] $(f_n)$ [/mm] ist" will ich mir grob anschauen wie das geht.

Zu Punkt 1:
Man nimmt sich 2 Darstellungen von f: [mm] $f=\sum_{k=1}^na_k\chi_{A_i}$ [/mm] und [mm] $f=\sum_{k=1}^mb_k\chi_{B_i}$ [/mm] und es soll gelten [mm] $\int_Xfd\mu=\sum_{k=1}^na_k\mu (A_i)=\sum_{k=1}^mb_k\mu (B_i)$. [/mm]
Also anschaulich wenn ich mir das aufzeichne, ist mir das klar. Kann das ganze nur ein wenig heuristisch erklären wobei ich da schon Schwierigkeiten habe, es ist Worten auszudrücken: Wenn jetzt zb $n>m$ und wenn ich jetzt speziell [mm] $X=[a,b]\subseteq\mathbb{R}$ [/mm] betrachte, hab ich nur noch mehr Zerlegungen [mm] $A_i$ [/mm] als [mm] $B_i$ [/mm]  des Intervalls. Aber insgesamt müssen die beiden Summen übereinstimmen, auch wenn man in der ersten Summe [mm] $f=\sum_{k=1}^na_k\chi_{A_i}$ [/mm] gleich viele oder mehr Summanden als in der 2.Summendarstellung für die einzelnen Teilintervalle benötigt. Wenn man zb das Intervall $[a,b]$ nicht unterteilt und betrachte [mm] $f=b\chi_{[a,b]}$, [/mm] und einmal [mm] $f=a_1\chi_{[a,\frac{a+b}{2}]}+a_2\chi_{[\frac{a+b}{2},b]}$, [/mm] dann ist ja die Länge von $[a,b]$= Länge von$ [mm] [a,\frac{a+b}{2}]$+Länge [/mm] von [mm] $[\frac{a+b}{2},b] [/mm] $ und auch ist anschaulich klar, dass [mm] $a_1$ [/mm] und [mm] $a_2$ [/mm] zusammen $b$ ergeben.
Also das jetzt mal als Spezialfall. Und das Integral ist linear...
Kann mir jemand sagen wie man grob vorgeht wenn man es formal zeigen will bzw wie mand as aufschreibt?

Bei Punkt 2 denke nimmt man sich auch eine weitere nichtnegative, monoton wachsende Folge [mm] $(g_n)$ [/mm] wie [mm] $(f_n)$ [/mm] her die punktweise gegen f konvergiert. Macht man dann eine Mischfolge draus? Oder wie zeigt man grob 2?

Zumindest wäre ich sehr dran interessiert, wie man das ganz grob macht.
Gruß


        
Bezug
Integration bzgl. eines BM: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 Mi 21.01.2015
Autor: fred97


> Hallo. In meinem Skript steht:
>  Sei X ein metrischer Raum. Für eine Borelmeßbare
> einfache Funktion [mm]f:X\to\mathbb{K}[/mm],
> [mm]f=\sum_{k=1}^na_k\chi_{A_i}[/mm], wobei [mm]a_i\in \mathbb{K}[/mm],
> [mm]A_i\in B_X[/mm] ([mm]B_X[/mm][mm] =Borelsche-\sigma-Algebra[/mm] von X), wird das
> Integral von f bezüglich eines signierten/komplexen Maß
> [mm]\mu:B_X\to \mathbb{K}[/mm] in natürlicher Weise definiert als:
>  [mm]\int_Xfd\mu:=\sum_{k=1}^na_k\mu (A_i)[/mm].  
>
> 1. Ich will wissen wie man zeigt, dass der Wert nicht von
> der Wahl der Darstellung von f abhängt. Wir haben nur
> gesagt, dass man das zeigen kann, aber es nicht gemacht.

Tja, der Beweis hierfür ist nicht einfach. Beweise findest Du in den meisten Büchern zur Maß- und Integrationstheorie.


>  
> Weiter aus der Vorlesung:
>  Ist zunächst [mm]\mu[/mm] ein positives Borelmaß,
> [mm]f:X\to\mathbb{R}_{\ge 0}[/mm]
>  Borelmeßbar, so existiert eine
> Folge von einfachen Funktionen [mm](f_n)[/mm] mit [mm]0\le f_n \le f_{n+1}\;\; \forall n\in\mathbb{N}[/mm]
> mit [mm]\limes_{n\rightarrow\infty} f_n(x)=f(x)[/mm] für jedes [mm]x\in X[/mm].
> Es folgt, dass [mm]\limes_{n\rightarrow\infty}\int_Xf_nd\mu \in [0,\infty][/mm]
> existiert und man definiert
>  [mm]\int_Xfd\mu:=\limes_{n\rightarrow\infty}\int_Xf_nd\mu [/mm], da
> man zeigen kann, dass der Grenzwert unabhängig von der
> gewählten monton wachsenden Folge von Trepenfunktionen
> [mm](f_n)[/mm] ist.  
>
> 2. Auch hierfür "da man zeigen kann, dass der Grenzwert
> unabhängig von der gewählten monton wachsenden Folge von
> Trepenfunktionen [mm](f_n)[/mm] ist" will ich mir grob anschauen wie
> das geht.

Definiere

    [mm] S:=\sup \{\integral_{X}^{}{g d \mu}: 0 \le g \le f; \quad g \quad einfache \quad Treppenfunktion \} [/mm]

Sei nun eine [mm] (f_n) [/mm] eine Folge von einfachen Funktionen  mit $ [mm] 0\le f_n \le f_{n+1}\;\; \forall n\in\mathbb{N} [/mm] $ mit $ [mm] \limes_{n\rightarrow\infty} f_n(x)=f(x) [/mm] $ für jedes $ [mm] x\in [/mm] X $, so zeige:

    [mm] $\limes_{n\rightarrow\infty}\int_Xf_nd\mu [/mm] =S$.

FRED

>  
> Zu Punkt 1:
> Man nimmt sich 2 Darstellungen von f:
> [mm]f=\sum_{k=1}^na_k\chi_{A_i}[/mm] und [mm]f=\sum_{k=1}^mb_k\chi_{B_i}[/mm]
> und es soll gelten [mm]\int_Xfd\mu=\sum_{k=1}^na_k\mu (A_i)=\sum_{k=1}^mb_k\mu (B_i)[/mm].
>  
> Also anschaulich wenn ich mir das aufzeichne, ist mir das
> klar. Kann das ganze nur ein wenig heuristisch erklären
> wobei ich da schon Schwierigkeiten habe, es ist Worten
> auszudrücken: Wenn jetzt zb [mm]n>m[/mm] und wenn ich jetzt
> speziell [mm]X=[a,b]\subseteq\mathbb{R}[/mm] betrachte, hab ich nur
> noch mehr Zerlegungen [mm]A_i[/mm] als [mm]B_i[/mm]  des Intervalls. Aber
> insgesamt müssen die beiden Summen übereinstimmen, auch
> wenn man in der ersten Summe [mm]f=\sum_{k=1}^na_k\chi_{A_i}[/mm]
> gleich viele oder mehr Summanden als in der
> 2.Summendarstellung für die einzelnen Teilintervalle
> benötigt. Wenn man zb das Intervall [mm][a,b][/mm] nicht unterteilt
> und betrachte [mm]f=b\chi_{[a,b]}[/mm], und einmal
> [mm]f=a_1\chi_{[a,\frac{a+b}{2}]}+a_2\chi_{[\frac{a+b}{2},b]}[/mm],
> dann ist ja die Länge von [mm][a,b][/mm]= Länge von[mm] [a,\frac{a+b}{2}][/mm]+Länge
> von [mm][\frac{a+b}{2},b][/mm] und auch ist anschaulich klar, dass
> [mm]a_1[/mm] und [mm]a_2[/mm] zusammen [mm]b[/mm] ergeben.
>  Also das jetzt mal als Spezialfall. Und das Integral ist
> linear...
>  Kann mir jemand sagen wie man grob vorgeht wenn man es
> formal zeigen will bzw wie mand as aufschreibt?
>  
> Bei Punkt 2 denke nimmt man sich auch eine weitere
> nichtnegative, monoton wachsende Folge [mm](g_n)[/mm] wie [mm](f_n)[/mm] her
> die punktweise gegen f konvergiert. Macht man dann eine
> Mischfolge draus? Oder wie zeigt man grob 2?
>  
> Zumindest wäre ich sehr dran interessiert, wie man das
> ganz grob macht.
>  Gruß
>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de