www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integrationstheorie" - Integrierbarkeit
Integrierbarkeit < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Integrierbarkeit: argumentation
Status: (Frage) beantwortet Status 
Datum: 15:34 Mo 18.05.2015
Autor: Mapunzel

Aufgabe
Es sei f eine nicht negative messbare numerische Funktion auf einem [mm] Maßraum\left(\Omega, \mathcal{A}, \mu\right) [/mm] mit [mm] \mu\left(\Omega\right)<\infty. [/mm] Zeigen Sie:
(a) Nimmt die Funnktion nur ganzzahlige Werte an, so gilt [mm] \integral{f d\mu}= \sum_{n=1}^{\infty}{\mu\left(f\ge n\right)} [/mm]
(b) Die Funktion f (nicht notwendigerweise ganzzahlig) ist genau dann [mm] \mu-integrierbar, [/mm] wenn [mm] $$\sum_{n=1}^{\infty}{\mu\left(f\ge n\right)}<\infty$$ [/mm] gilt.
(c) Aus(a) folgt [mm] \limes_{n\rightarrow\infty}n\mu\left(f\ge n\right) [/mm] = 0

Hallo, ich habe die Fragen alle bearbeitet und möchte gerne wissen ob meine Ideen richtig sind bzw an ein paar Stellen fehlen mir noch Argumentationsschritte. Zu (a) habe ich geschrieben, dass f = [mm] \sum_{n\in\IN}{a_n\mathbf{1}_{A_n}} [/mm] mit [mm] a_n\in\mathbb{Z}^{+} [/mm] und [mm] A_n=\{a_n^{-1}\}\in\mathcal{A}, [/mm] weil es ja eine einfache Funktion ist und dann folgt per Def. [mm] \integral{f d\mu} [/mm] = [mm] \sum_{n\in\IN}{a_n\mu\left(A_n\right)} [/mm] = [mm] \sum_{n\in\IN}{a_n\mu\left(f=a_n\right)}=\sum_{n\in\IN}{n\mu\left(f=n\right)}=\sum_{n\in\IN}{\mu\left(f\ge n\right)} [/mm]
Denke das sollte soweit ok sein. Bei (b) bin ich mir unsicher ob das in beide Richtungen gleichzeitig funktioniert(und ob es überhaupt funktioniert):
[mm] \sum_{n=1}^{\infty}{\mu\left(f\ge n\right)}<\infty \gdw \sum_{n=1}^{\infty}{\mu\left(\lceil f\rceil\ge n\right)}<\infty \gdw \sum_{n=1}^{\infty}{\mu\left(\lceil f\rceil\ge n\right)}<\infty [/mm] = [mm] \integral{\lceil f\rceil d\mu} [/mm] < [mm] \infty \gdw \integral{f d\mu} [/mm] < [mm] \infty [/mm]
Dabei hab ich Aufgabenteil 1 und die Monotonie benutzt.
bei (c) kann man denk ich sagen dass [mm] \mu\left(f\ge n\right) [/mm] < [mm] \frac{1}{n} [/mm]  sein muss da wir von der zugehörgien Reihe wissen, dass sie divergiert. Somit geht der Grenzwert gegen 0.
Danke für eure Mühe, mfg

        
Bezug
Integrierbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 09:23 Mi 20.05.2015
Autor: Gonozal_IX

Hiho,

vorweg: Deine Ideen sind allesamt richtig, ein paar kleinere Korrekturen hab ich jedoch:

> f = [mm]\sum_{n\in\IN}{a_n\mathbf{1}_{A_n}}[/mm] mit
> [mm]a_n\in\mathbb{Z}^{+}[/mm] und [mm]A_n=\{a_n^{-1}\}\in\mathcal{A},[/mm]

Du meinst statt [mm] a_n^{-1} [/mm] sicherlich [mm] $f^{-1}(a_n)$. [/mm]
Dann: Schreibe doch gleich $f = [mm][mm] \sum_{n\in\IN}{n\mathbf{1}_{A_n}}$ [/mm] mit [mm] $A_n [/mm] = [mm] f^{-1}(n)$ [/mm]

> Bei (b) bin ich mir unsicher ob das in beide Richtungen gleichzeitig funktioniert

Nein tut es nicht, bspw. schreibst du:
[mm]\sum_{n=1}^{\infty}{\mu\left(f\ge n\right)}<\infty \gdw \sum_{n=1}^{\infty}{\mu\left(\lceil f\rceil\ge n\right)}<\infty[/mm]

[mm] $\Rightarrow$ [/mm] ist klar [mm] $\Leftarrow$ [/mm] muss aber gar nicht gelten.
Deine Idee Funktioniert aber trotzdem, wenn du für eine Richtung der "genau dann, wenn" - Aussage [mm] $\lceil f\rceil$ [/mm] benutzt und für die andere [mm] $\lfloor f\rfloor$. [/mm]
Für welche was findest du bestimmt raus ;-)

>  bei (c) kann man denk ich sagen dass [mm]\mu\left(f\ge n\right)[/mm] < [mm]\frac{1}{n}[/mm]  sein muss da wir von der zugehörgien Reihe wissen, dass sie divergiert.

Erstmal: So für alle n kannst du diese Aussage nicht treffen. Nur, dass es "ab und an" Folgenglieder gibt, für die das gelten muss. (Ein schönes Gegenbeispiel findest du hier, bei dem der harmonischen Reihe ein "paar" Summanden entfernt wird und schon konvergiert sie.)

Aber auch hier ist deine Idee durchaus verwertbar: Nimm mal an [mm] $n(f\ge [/mm] n)$ würde nicht gegen 0 gehen, schreibe dir die Definition davon auf und verwende das dann um gegen die harmonische Reihe abzuschätzen.

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de