www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stochastik" - Kombinatorik
Kombinatorik < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:10 Fr 08.12.2017
Autor: Mandy_90

Aufgabe
16 Personen besteigen einen Zug mit vier Wagen. Jede Person wählt zufällig und unabhängig von den anderen Personen einen Wagen. Wie groß ist unter geeigneter Laplace-Annahme die Wahrscheinlichkeit dafür, dass
(a) genau fünf Personen in den ersten Wagen steigen,
(b) jeweils vier Personen in jeden Wagen steigen,
(c) die 16 Personen sich in Gruppen zu zwei, drei, fünf und sechs Personen auf die vier Wagen aufteilen?

Hallo,

diese Aufgabe ist doch komplizierter als es auf den ersten Blick schien
Zu
a) Da hab ich [mm] \vektor{16 \\ 5}*((\bruch{1}{4})^{5}*(\bruch{3}{4})^{11})) [/mm]
b) [mm] (\vektor{16 \\ 4}*((\bruch{1}{4})^{4})*(\vektor{12 \\ 4}*((\bruch{1}{3})^{4})*(\vektor{8 \\ 4}*((\bruch{1}{2})^{4})*(\vektor{4 \\ 4}*((\bruch{1}{1})^{4}) [/mm]
c) Hier versteh ich die Aufgabenstellung nicht ganz, wenn man Gruppen von 3,5 oder 6 Personen bildet, ist dies doch gar nicht auf 16 aufteilbar. Was genau ist hier gemeint ?

lg
Mandy_90

        
Bezug
Kombinatorik: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:28 Fr 08.12.2017
Autor: luis52

  
> c) Hier versteh ich die Aufgabenstellung nicht ganz, wenn
> man Gruppen von 3,5 oder 6 Personen bildet, ist dies doch
> gar nicht auf 16 aufteilbar. Was genau ist hier gemeint ?
>
> lg
>  Mandy_90

Moin, *ich* lese (c) die 16 Personen sich in Gruppen zu *zwei*, drei, fünf
*und* sechs Personen
also $2+3+5+6=16$.


Bezug
        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 13:33 Fr 08.12.2017
Autor: Gonozal_IX

Hiho,

> a) Da hab ich [mm]\vektor{16 \\ 5}*((\bruch{1}{4})^{5}*(\bruch{3}{4})^{11}))[/mm]

[ok]


> b) [mm](\vektor{16 \\ 4}*((\bruch{1}{4})^{4})*(\vektor{12 \\ 4}*((\bruch{1}{3})^{4})*(\vektor{8 \\ 4}*((\bruch{1}{2})^{4})*(\vektor{4 \\ 4}*((\bruch{1}{1})^{4})[/mm]

Deine Idee ist korrekt… aber wieso änderst du die Wahrscheinlichkeiten? Die Wahrscheinlichkeit pro Wagen bleibt doch bei [mm] $\frac{1}{4}$. [/mm]
Deine ausgewählten Personen haben doch theoretisch auch die Wahl in einen anderen Wagen zu steigen… aber die Fälle willst du ja nicht haben.

> c) Hier versteh ich die Aufgabenstellung nicht ganz, wenn
> man Gruppen von 3,5 oder 6 Personen bildet, ist dies doch
> gar nicht auf 16 aufteilbar. Was genau ist hier gemeint ?

Und, nicht oder!
Es ist also gemeint, dass es insgesamt 4 Gruppen gibt. Eine bestehend aus 2 Personen, eine aus 3 Personen, eine aus 5 Personen, eine aus 6 Personen.
Und da 2+3+5+6 = 16 sind alle Personen in einer Gruppe.

Gruß,
Gono

Bezug
                
Bezug
Kombinatorik: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:36 Fr 08.12.2017
Autor: Mandy_90


> Hiho,
>  
> > a) Da hab ich [mm]\vektor{16 \\ 5}*((\bruch{1}{4})^{5}*(\bruch{3}{4})^{11}))[/mm]
>  
> [ok]
>  
>
> > b) [mm](\vektor{16 \\ 4}*((\bruch{1}{4})^{4})*(\vektor{12 \\ 4}*((\bruch{1}{3})^{4})*(\vektor{8 \\ 4}*((\bruch{1}{2})^{4})*(\vektor{4 \\ 4}*((\bruch{1}{1})^{4})[/mm]
>  
> Deine Idee ist korrekt… aber wieso änderst du die
> Wahrscheinlichkeiten? Die Wahrscheinlichkeit pro Wagen
> bleibt doch bei [mm]\frac{1}{4}[/mm].
>  Deine ausgewählten Personen haben doch theoretisch auch
> die Wahl in einen anderen Wagen zu steigen… aber die
> Fälle willst du ja nicht haben.

Ich dachte wenn die ersten vier Personen einen Wagen besteigen können sich die nächsten doch nur aus den verbleibenden 3 Wägen einen aussuchen usw. Wieso geht das nicht ?

>  
> > c) Hier versteh ich die Aufgabenstellung nicht ganz, wenn
> > man Gruppen von 3,5 oder 6 Personen bildet, ist dies doch
> > gar nicht auf 16 aufteilbar. Was genau ist hier gemeint ?
> Und, nicht oder!
>  Es ist also gemeint, dass es insgesamt 4 Gruppen gibt.
> Eine bestehend aus 2 Personen, eine aus 3 Personen, eine
> aus 5 Personen, eine aus 6 Personen.
>  Und da 2+3+5+6 = 16 sind alle Personen in einer Gruppe.

Das müsste dann so aussehen:
[mm] (\vektor{16 \\ 2}*((\bruch{1}{4})^{2})*(\vektor{14 \\ 3}*((\bruch{1}{4})^{3})*(\vektor{11 \\ 5}*((\bruch{1}{4})^{5})*(\vektor{6 \\ 6}*((\bruch{1}{4})^{6}) [/mm] ?
Mir kommt manchmal auch die Idee die Terme zu addieren anstatt zu multiplizieren. Kann man sich das irgendwie merken wann addiert und wann multipliziert wird ?

lg
Mandy_90

Bezug
                        
Bezug
Kombinatorik: Antwort
Status: (Antwort) fertig Status 
Datum: 11:07 Sa 09.12.2017
Autor: Gonozal_IX

Hiho,

> Ich dachte wenn die ersten vier Personen einen Wagen
> besteigen können sich die nächsten doch nur aus den
> verbleibenden 3 Wägen einen aussuchen usw. Wieso geht das
> nicht ?

Klar geht das so, aber das was du aufschreibst ist das nicht.
Machen wir das mal deutlich einfacher: Nimm 4 Personen und 4 Wagen.
Wie wahrscheinlich ist es, dass alle in einen Wagen steigen?
Wie wahrscheinlich ist es, dass alle in verschiedene Wagen steigen (also alle 4 Wagen besetzt sind)

Beide Ereignisse haben natürlich die selbe Wahrscheinlichkeit, nach deiner Theorie wäre aber die Wahrscheinlichkeit für das zweite Ereignis deutlich größer.

> Das müsste dann so aussehen:
> [mm](\vektor{16 \\ 2}*((\bruch{1}{4})^{2})*(\vektor{14 \\ 3}*((\bruch{1}{4})^{3})*(\vektor{11 \\ 5}*((\bruch{1}{4})^{5})*(\vektor{6 \\ 6}*((\bruch{1}{4})^{6})[/mm]

Das passt meiner Meinung nach so.
Kann man bestimmt noch irgendwie vereinfachen…

>  Mir kommt manchmal auch die Idee die Terme zu addieren
> anstatt zu multiplizieren. Kann man sich das irgendwie
> merken wann addiert und wann multipliziert wird ?

Ganz allgemeine Gegenfrage: Welche Formeln bezüglich Wahrscheinlichkeiten kennst du, wo multipliziert wird und welche wo addiert wird?

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 3h 11m 4. chrisno
SChem/DGL: Mischung im Behälter
Status vor 4h 15m 10. donquijote
ULinAMat/Gruppe der inv. Matrizen
Status vor 1d 9h 01m 1. Fatih17
UAlgGeo/Clustering in Social Networks
Status vor 2d 11. Al-Chwarizmi
STrigoFktn/Cosinus und Arc Cosinus
Status vor 2d 2. HJKweseleit
UElek/Kondensator Reihenschaltung
^ Seitenanfang ^
www.vorhilfe.de