www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Konvergenz in nom. Räumen
Konvergenz in nom. Räumen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Konvergenz in nom. Räumen: aufzeigen
Status: (Frage) beantwortet Status 
Datum: 12:46 Mi 10.05.2017
Autor: Austinn

Aufgabe
a) Untersuchen Sie die angegebene Folge [mm] (a_{n})_{n\in\IN} [/mm] im [mm] \IR^{3} [/mm] auf Konvergenz und bestimmen Sie gegebenenfalls ihren Grenzwert.
[mm] a_{n}:=\vektor{\summe_{k=0}^{n}\bruch{5\*3^{k}}{4^{k+2}} \\ \wurzel{1+n}-\wurzel{n} \\42+\bruch{1}{n+1}} [/mm]
b) Sei (V, [mm] \parallel\cdot\parallel_{V}) [/mm] ein vollständiger normierter Raum. Zeigen Sie, dass eine Folge [mm] (a_{n})_{n\in\IN}\subseteqV [/mm] genau dann konvergiert wenn Sie eine Cauchy-Folge ist.



Hallo,
die a) war relativ verständlich, ganz im Gegensatz zu der b) wobei ich da überhaupt keine Idee habe wie ich das lösen soll. Aber erstmal zu a).
[mm] x=\bruch{3}{4}, y=\infty, [/mm] z=42. Eine Folge [mm] (a_{n})_{n\in\IN} [/mm] im [mm] \IR^{3} [/mm] konvergiert doch nur wenn alle seine Teilkomponenten den selben "Wert" haben und somit konvergiert diese Folge nicht und hat somit auch keinen Grenzwert.

Ich weiß nicht wie ich die b) , dass eine Folge [mm] (a_{n})_{n\in\IN}\subseteqV [/mm] genau dann konvergiert wenn Sie eine Cauchy-Folge ist,  zeigen soll.
Wäre sehr dankbat, wenn mir das jemand mit Erklärung aufzeigen könnte.
Danke!


        
Bezug
Konvergenz in nom. Räumen: Antwort
Status: (Antwort) fertig Status 
Datum: 13:16 Mi 10.05.2017
Autor: fred97


> a) Untersuchen Sie die angegebene Folge [mm](a_{n})_{n\in\IN}[/mm]
> im [mm]\IR^{3}[/mm] auf Konvergenz und bestimmen Sie gegebenenfalls
> ihren Grenzwert.
>  [mm]a_{n}:=\vektor{\summe_{k=0}^{n}\bruch{5\*3^{k}}{4^{k+2}} \\ \wurzel{1+n}-\wurzel{n} \\42+\bruch{1}{n+1}}[/mm]
>  
> b) Sei (V, [mm]\parallel\cdot\parallel_{V})[/mm] ein vollständiger
> normierter Raum. Zeigen Sie, dass eine Folge
> [mm](a_{n})_{n\in\IN}\subseteqV[/mm] genau dann konvergiert wenn Sie
> eine Cauchy-Folge ist.
>  
>
> Hallo,
>  die a) war relativ verständlich, ganz im Gegensatz zu der
> b) wobei ich da überhaupt keine Idee habe wie ich das
> lösen soll. Aber erstmal zu a).
>  [mm]x=\bruch{3}{4}, y=\infty,[/mm] z=42. Eine Folge
> [mm](a_{n})_{n\in\IN}[/mm] im [mm]\IR^{3}[/mm] konvergiert doch nur wenn alle
> seine Teilkomponenten den selben "Wert" haben und somit
> konvergiert diese Folge nicht und hat somit auch keinen
> Grenzwert.

Das stimmt nicht:

[mm] \summe_{k=0}^{n}\bruch{5\*3^{k}}{4^{k+2}} [/mm] konvergiert gegen 5/4

[mm] \wurzel{1+n}-\wurzel{n} [/mm] konvergiert gegen 0 und die 3. Folge gegen 42.

Damit konv. [mm] (a_n) [/mm] gegen (5/4, [mm] 0,42)^T [/mm]


>  
> Ich weiß nicht wie ich die b) , dass eine Folge
> [mm](a_{n})_{n\in\IN}\subseteqV[/mm] genau dann konvergiert wenn Sie
> eine Cauchy-Folge ist,  zeigen soll.
>  Wäre sehr dankbat, wenn mir das jemand mit Erklärung
> aufzeigen könnte.
>  Danke!
>  


Bei b) wundere ich mich sehr !

Das was Du angeblich zeigen sollst ist doch die Definition von "vollständig " ?? !

Bezug
                
Bezug
Konvergenz in nom. Räumen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:43 Mi 10.05.2017
Autor: Austinn


>   [mm] \summe_{k=0}^{n}\bruch{5*3^{k}}{4^{k+2}} [/mm] $ konvergiert gegen 5/4

Danke für die Korrektur!

>   [mm] \wurzel{1+n}-\wurzel{n} [/mm] $ konvergiert gegen 0 und die 3. Folge gegen 42.

Warum konvergiert [mm] \wurzel{1+n}-\wurzel{n} [/mm] gegen 0?

>  Bei b) wundere ich mich sehr !

>  Das was Du angeblich zeigen sollst ist doch die Definition von "vollständig " ?? !

Und wie würde ich das am Beispiel der b) zeigen?

Bezug
                        
Bezug
Konvergenz in nom. Räumen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:37 Mi 10.05.2017
Autor: Gonozal_IX

Hiho,

>  Warum konvergiert [mm]\wurzel{1+n}-\wurzel{n}[/mm] gegen 0?

die Frage nach dem "Warum" kann man dir nur beantworten mit: "Weil es nach Definition des Grenzwerts so ist!"
Was du sicherlich meinst ist "Wie kann ich zeigen, dass die Folge gegen 0 konvergiert".

Tipp: Erweitere mal mit [mm] $\wurzel{1+n} [/mm] + [mm] \wurzel{n}$ [/mm] und erinnere dich an die binomischen Formeln…

>  Und wie würde ich das am Beispiel der b) zeigen?

Da ist nichts zu zeigen! Normalerweise…
Ein normierter Raum ist vollständig, genau dann, wenn jede Cauchy-Folge konvergiert…

So definiert man das normalerweise. Wenn du die b) "zeigen" sollst, müsst ihr Vollständigkeit anders definiert haben. Wenn du uns verrätst, wie, kann man dir weiterhelfen.

Gruß,
Gono

Bezug
                                
Bezug
Konvergenz in nom. Räumen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:38 Mi 10.05.2017
Autor: tobit09

Hallo zusammen!


> >  Und wie würde ich das am Beispiel der b) zeigen?

> Da ist nichts zu zeigen! Normalerweise…
>  Ein normierter Raum ist vollständig, genau dann, wenn
> jede Cauchy-Folge konvergiert…

Gezeigt werden soll nun, dass in vollständigen normierten Räumen für jede Folge [mm] $(a_n)_{n\in\IN}$ [/mm] von Punkten des Raumes folgende Aussagen äquivalent sind:
1. [mm] $(a_n)_{n\in\IN}$ [/mm] ist eine Cauchy-Folge
2. [mm] $(a_n)_{n\in\IN}$ [/mm] konvergiert.

Die Richtung von 1. nach 2. folgt unter Annahme der von dir, Gono, genannten üblichen Definition eines vollständigen normierten Raumes in der Tat direkt aus dieser Definition.
Bleibt noch die Richtung von 2. nach 1. zu zeigen (falls noch nicht in der Vorlesung geschehen).


> So definiert man das normalerweise. Wenn du die b) "zeigen"
> sollst, müsst ihr Vollständigkeit anders definiert haben.
> Wenn du uns verrätst, wie, kann man dir weiterhelfen.

Das fände ich auch auf alle Fälle sinnvoll!


Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de