www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Lagrange Polynome Basis
Lagrange Polynome Basis < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lagrange Polynome Basis: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:16 Fr 20.01.2017
Autor: Schmetterling99

Hallo,
ich soll zeigen, dass für beliebige Stützstellen [mm] x_{0} [/mm] < ... < [mm] x_{n} [/mm] die Lagrange Polynome
[mm] l_{jn} [/mm] (x)= [mm] \produkt_{k=0}^{n} \bruch{x-x_{k}}{x_{j}+x{k}} [/mm] (k [mm] \not= [/mm] j und [mm] 0\le [/mm] j [mm] \le [/mm] n)
eine Basis des Vektorraums [mm] P_{n} [/mm] der Polynome vom Höchstgrad n bilden.

Meine Ideen:
Ich muss lineare Unabhängigkeit und EZS zeigen:


Für die Lineare Unabhängigkeit habe ich:

[mm] \summe_{j=0}^{n} l_{jn} [/mm] (x) * [mm] \alpha_{j}= [/mm] 0
[mm] \gdw l_{0n} (x_{0}) [/mm] * [mm] \alpha_{0} [/mm] + ... + [mm] l_{nn} (x_{n}) [/mm] * [mm] \alpha_{n}=0 [/mm]

Wir wissen aus der Vorlesung, dass gilt:

[mm] l_{jn} (x_{i}) [/mm] = 1 für j=i und 0 für j [mm] \not= [/mm] i

Daraus folgt, dass in  

[mm] l_{0n} (x_{0}) [/mm] * [mm] \alpha_{0} [/mm] + ... + [mm] l_{nn} (x_{n}) [/mm] * [mm] \alpha_{n}=0 [/mm]
die l's (x)=1 sind und somit ungleich 0, so dass folgt, dass die Alphas=0 gelten muss.
Stimmt das so?

Erzeugendensystem:
Hier weiß ich leider nicht, wie ich das zeigen soll. Kann mir jemand dabei bitte helfen?

Gruß

        
Bezug
Lagrange Polynome Basis: Antwort
Status: (Antwort) fertig Status 
Datum: 19:42 Fr 20.01.2017
Autor: leduart

Hallo
$ [mm] l_{0n} (x_{0}) [/mm] $ * $ [mm] \alpha_{0} [/mm] $ + ... + $ [mm] l_{nn} (x_{n}) [/mm] $ * $ [mm] \alpha_{n}=0 [/mm] $
hat nichts mit $ [mm] \summe_{j=0}^{n} l_{jn} [/mm] $ (x) * $ [mm] \alpha_{j}= [/mm] $ 0 zu tun, du kannst nicht lauter verschiedene Stellen einsetzen!
aber du kannst nacheinander in $ [mm] \summe_{j=0}^{n} l_{jn} [/mm] $ (x) * $ [mm] \alpha_{j}= [/mm] $ 0  [mm] x_0 [/mm] bis [mm] x_n [/mm] einsetzen, und benutzen dass ein Polynom höchstens n Nullstellen hat.
Gruß leduart

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 5h 37m 8. Diophant
ULinAAb/Permutationsgr./ Transposition
Status vor 8h 22m 62. Diophant
MSons/Kann man beim Roulette verlier
Status vor 10h 34m 2. matux MR Agent
DiffGlPar/Abschätzung
Status vor 12h 07m 4. Diophant
UStoc/Geordnete Stichproben mit Wdh.
Status vor 12h 34m 7. matux MR Agent
Algebra/Integritätsbereich Polynomring
^ Seitenanfang ^
www.vorhilfe.de