www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Oberstufenmathematik (Klassen 11-13)" - Logarithmus Bruch mit Exponent
Logarithmus Bruch mit Exponent < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Oberstufenmathematik (Klassen 11-13)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Logarithmus Bruch mit Exponent: Korrekt ausgeführt?
Status: (Frage) beantwortet Status 
Datum: 01:51 Do 31.12.2015
Autor: n4x

Aufgabe
E = 0,16 + 0,0295 x lg [mm] \bruch{[0,1]x[H3O+]^2}{[99,9]} [/mm] (ph=5)
bzw.
E = 0,16 + 0,0295 x lg [mm] \bruch{[0,1]x[10^-5]^2}{[99,9]} [/mm]

Morgen ihr,

hoffe ich bin hier richtig gelandet ;)

Habe beim Logarithmus irgendwie eine Bildungslücke, kann ich diesen so auflösen:

E = 0,16 + 0,0295 x lg [mm] \bruch{[0,1]x[10^-5]^2}{[99,9]} [/mm]
E = 0,16 + 0,0295 x 2 x (-1) + (-5) - 1,9996
E = 0,16 + 0,059 x (-7,9996)
E = 0,16 + (-0,472)
E = -0,312
?

lg
n4x

        
Bezug
Logarithmus Bruch mit Exponent: Antwort
Status: (Antwort) fertig Status 
Datum: 06:34 Do 31.12.2015
Autor: angela.h.b.

Hallo,

so geht das, was Du vorhast, richtig:

>  E = 0,16 + 0,0295 x lg [mm] \bruch{[0,1]x[10^-5]^2}{[99,9]} [/mm]

=0,16 + [mm] 0,0295*(lg(0,1*(10^-5)^2)-lg99,9) [/mm]

=0,16 + [mm] 0,0295*(lg0,1+lg(10^-5)^2-lg99,9) [/mm]

=0,16 + [mm] 0,0295*(lg0,1+lg(10^-5)^2-lg99,9) [/mm]

=0,16 + 0,0295*(lg0,1+2*lg(10^-5)-lg99,9)

=0,16 + 0,0295*(-1+(-10)-1,996)

=...

LG Angela







>  
> E = 0,16 + 0,0295 x [mm] lg\bruch{[0,1]x[10^-5]^2}{[99,9]} [/mm]
>  E = 0,16 + 0,0295 x 2 x (-1) + (-5) - 1,9996
>  E = 0,16 + 0,059 x (-7,9996)
>  E = 0,16 + (-0,472)
>  E = -0,312
>  ?
>  
> lg
>  n4x


Bezug
                
Bezug
Logarithmus Bruch mit Exponent: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:15 Do 31.12.2015
Autor: n4x

Vielen Dank für die Antwort, das klingt auch viel logischer... hab das so von einer Beispielaufgabe abgeleitet:

E = 0,15 + 0,012 x lg [mm] [H3O+]^8 [/mm] (da pH = -lg[H3O+])
E = 0,15 - 0,096 x pH
(1,116 = 1,5 - 0,096 x 4 (bei Ph 4))

Da fehlten irgendwie Schritte drin, nach deiner Methode hätte ich eher:

E = 0,15 + 0,012 x lg [mm] [H3O+]^8 [/mm]
E = 0,15 + 0,012 x (-ph x 8)
(E = 0,15 + 0,012 x (-4 x 8)) -> (-0,234 = 0,15 + 0,12 x (-32))

Oder übersehe ich wieder war, lg ist nicht gerade meine Stärke :D

lg
n4x

Bezug
                        
Bezug
Logarithmus Bruch mit Exponent: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Do 31.12.2015
Autor: angela.h.b.


> Vielen Dank für die Antwort, das klingt auch viel
> logischer... hab das so von einer Beispielaufgabe
> abgeleitet:
>  
> E = 0,15 + 0,012 x lg [mm][H3O+]^8[/mm] (da pH = -lg[H3O+])
>   E = 0,15 - 0,096 x pH
>  (1,116 = [mm] \red{1,5} [/mm] - 0,096 x 4 (bei Ph 4))

Hallo,

das muß doch heißen:

[mm] =\red{0,15} [/mm] - 0,096 x 4=-0,234,

und Du siehst, daß das genau das ist, was Du unten auch ausgerechnet hast.

LG Angela


>  
> Da fehlten irgendwie Schritte drin, nach deiner Methode
> hätte ich eher:
>  
> E = 0,15 + 0,012 x lg [mm][H3O+]^8[/mm]
>   E = 0,15 + 0,012 x (-ph x 8)
>  (E = 0,15 + 0,012 x (-4 x 8)) -> (-0,234 = 0,15 + 0,12 x

> (-32))
>  
> Oder übersehe ich wieder war, lg ist nicht gerade meine
> Stärke :D
>  
> lg
>  n4x


Bezug
                                
Bezug
Logarithmus Bruch mit Exponent: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:41 Fr 01.01.2016
Autor: n4x

Ahhh, wie doof, ich hab die beiden Aufgaben durch copy paste durcheinander geworfen :D

Haut alles hin, danke für die klasse Hilfe :)

Bezug
        
Bezug
Logarithmus Bruch mit Exponent: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:01 Do 31.12.2015
Autor: Thomas_Aut

Liebe Moderatoren,

In Funktionalanalysis passt diese Frage aber wirklich nicht.


Frohes neues Jahr


Lg

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Oberstufenmathematik (Klassen 11-13)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 8m 2. fred97
SIntRech/Stammfunktion anschaulich
Status vor 3h 30m 10. sancho1980
ULinASon/Lineare Optimierung
Status vor 3h 55m 8. Stephan30
Tabellenkalkulationen/WENN DANN Excel
Status vor 5h 33m 1. Rocky1994
UFina/Kapitalwertmethode
Status vor 11h 14m 5. Gonozal_IX
ULinASon/Lineare Abhängigkeit
^ Seitenanfang ^
www.vorhilfe.de