www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra Sonstiges" - Mächtigkeit von Unterkörper
Mächtigkeit von Unterkörper < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mächtigkeit von Unterkörper: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 19:45 Di 10.11.2015
Autor: maggie123

Aufgabe
Sei R ein Körper und [mm] $\IL:=\{1_{R}*n | n \in \IZ\} \subset [/mm] R $. Zeige, dass [mm] $|\IL|$ [/mm] = char(R) und L ein Unterkörper von R ist.

Guten Abend,

ich habe einige Probleme mit oben gennanter Aufgabe, obwohl sie mir doch sehr "einfach" vorkommt. Ich habe leider überhaupt keine Ansatz. Ich weiß, dass falls char(R) eine Primzahl p ist, die Menge L aufjeden Fall endlich, da [mm] $p*1_{R} [/mm] = 0$ ist. Aber für einen richtigen Beweis habe ich leider überhaupt keine Idee. Hoffe mir kann jemand helfen, bin schon am verzweifeln.

VG

maggie

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Mächtigkeit von Unterkörper: Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 Di 10.11.2015
Autor: UniversellesObjekt

Es sollte irgendwo vorausgesetzt sein, dass die Charakteristik positiv ist, damit es stimmt. Dass es ein Unterring ist, sollte einfach sein. Wenn du schon den Körper [mm] $\IZ/p\IZ$ [/mm] oder [mm] $\IF_p$ [/mm] kennst, wäre das einfachste wohl, zu zeigen, dass der Ringhomomorphismus [mm] $f\colon \IZ\longrightarrow [/mm] R$ (du kennst Ringe?) einen Isomorphismus [mm] $\IZ/p\IZ\cong [/mm] Bild(f)$ induziert. Dann weißt du automatisch, dass es ein Unterring, sogar ein Unterkörper ist und $p$ Elemente enthält.

Liebe Grüße,
UniversellesObjekt

Bezug
                
Bezug
Mächtigkeit von Unterkörper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:59 Di 10.11.2015
Autor: maggie123

Viele Dank für deine schnell Antwort. Wir haben weder Ringe noch Homomorphismen bis jetzt gehabt. Den Z/pZ und Fp hatten wir bereits. Ich habe vergessen dazu zuschreiben, dass es ein p aus N gibt mit char(R)=p (wird vorausgesetzt)und in der vorherigen Aufgabe sollte man auch zeigen, dass es sich dann bei p um eine Primzahl handelt.

VG

maggie

Bezug
                        
Bezug
Mächtigkeit von Unterkörper: Antwort
Status: (Antwort) fertig Status 
Datum: 20:05 Di 10.11.2015
Autor: UniversellesObjekt

Dann ist natürlich interessant dass euer Körper $R$ heißt, womit man normalerweise nur Ringe bezeichnet :D Aber das macht nichts.

Zeige, dass die Elemente [mm] $0\cdot 1_R$, $1\cdot 1_R$,... ,$(p-1)\cdot 1_R$ [/mm] alle verschieden sind und dass jedes Element der Form [mm] $n\cdot 1_R$ [/mm] bereits eines der obigen $p$ Stück ist. Dafür wird Division mit Rest ein hilfreiches Mittel sein.

Um zu zeigen, dass es sich um einen Unterkörper handelt, kannst du euren Beweis, dass [mm] $\IF_p$ [/mm] ein Körper ist, kopieren (alles, bis auf die Existenz von Inversen Elementen sollte sowieso einfach sein).

Liebe Grüße,
UniversellesObjekt

Bezug
                                
Bezug
Mächtigkeit von Unterkörper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:31 Di 10.11.2015
Autor: maggie123

Vielen Dank, das hat mir schon sehr weiter geholfen. Also den Tipp mit der Division mit Rest fasse ich mal so auf:

Wenn n=p ist, bin ich ja fertig, da dann n*1k = 0
Wenn n =/ p ist, gibt es k aus N und q aus Z mit 0<k<p : n=q*p+k und dann gilt: [mm] 1_{R}*n [/mm] = [mm] 1_{R}*(q*p+k) [/mm] = [mm] 1_{R}*q*p+1_{R}*k [/mm] = 0 [mm] +1_{R}*k=k [/mm]

Aber wie soll ich zeigen, dass die Elemente verschieden sind? Angenommen zwei Elemente p-n und p-m mit n=/m und 0<n,m<=p wären gleich, dann gilt:
[mm] 1_{R}*(p-n) [/mm] = [mm] 1_{R}*(p-m) [/mm]
<=> [mm] 1_{R}*((p-n)-(p-m)) [/mm] = [mm] 1_{R}*(m-n)= [/mm] 0,

aber da m-n kleiner p ist, wäre das ja ein widerspruch, da ja p die Charakteristik von R ist? Oder hab ich mich zu früh gefreut?

VG

maggie




Bezug
                                        
Bezug
Mächtigkeit von Unterkörper: Antwort
Status: (Antwort) fertig Status 
Datum: 08:09 Mi 11.11.2015
Autor: hippias

Nein, Du hast Dich nicht zu früh gefreut.

Bezug
                                                
Bezug
Mächtigkeit von Unterkörper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:10 Mi 11.11.2015
Autor: maggie123

Vielen Dank für deine Antwort. Ich habe leider richtig Problem zu zeigen, dass es sich um einen Körper handelt. Ich weis, dass das Assoziativgesetz, Kommutativgesetz und das Distributiv Gesetz übernommen werden, da L eine Teilmenge eines Körpers ist. Das Nullelement ist auch gegeben, da p*1R=0 ein Vielfaches ist. Genauso ist natürlich auch die 1 enthalten.
Für die Abgeschlossenheit der Addition hab ich n*1R+ m*1R=(n+m)*1R und wenn n und m aus z ist dann auch n+m. Für die abgeschlossenheit geht es ja genauso.
Für die Existenz von einem Additiv inversen, kann ich ja einfach ein Element n aus F nehmen und dann genauso zeigen :
n*1R+m+1R = (n+m)*1R = 0 => n+m = 0 <=> m=-n und da m,n aus Z sind existiert solch ein m natürlich. Aber wie mache ich das mit den multiplikative Inversen?
Uns wurde der Tipp gegeben,  die Existenz analog zu Z/pZ zu beweisen und dann zu benutzen, dass eine injektive Abbildung zwischen  gleichmächtigen Mengen auch surjektiv ist. Aber wie kann ich das verwenden um die Existenz von Inversen in L zu zeigen? Wäre für jeden Tipp dankbar ...

VG

Maggie

Bezug
                                                        
Bezug
Mächtigkeit von Unterkörper: Antwort
Status: (Antwort) fertig Status 
Datum: 16:29 Mi 11.11.2015
Autor: UniversellesObjekt

Hi, hast du jetzt schon geschafft zu zeigen, dass [mm] $0\cdot 1_R,\dots,(p-1)\cdot 1_R$ [/mm] alls verschieden sind? Falls ja, gut. Falls nein, nochmal ein Tipp: Wenn [mm] $n\cdot 1_R=m\cdot 1_R$, [/mm] wobei [mm] $0\le m,n\le [/mm] p-1$, so gelte ohne Einschränkung [mm] $m\le [/mm] n$. Beachte [mm] $0\le n-m\le [/mm] p-1$. Was ist [mm] $(n-m)\cdot 1_R$? [/mm] Was folgt daraus für $n-m$?

Was die Existenz Inverser angeht: Ihr wisst mittlerweile, dass [mm] $\IL$ [/mm] multiplikativ abgeschlossen ist. Genauer gesagt gilt [mm] $(m\cdot 1_R)\cdot(n\cdot 1_R)=(m\cdot n)\cdot 1_R$. [/mm] Wir fixieren [mm] $0\not=a\in\IL$ [/mm] und wollen zeigen, dass ein Inverses zu $a$ existiert. Wende dafür den Tipp auf die Abbildung [mm] $\mu_a\colon\IL\longrightarrow\IL$, $x\longmapsto [/mm] ax$ an.

Übrigens sollte der Tipp lauten, dass eine injektive Abbildung zwischen endlichen gleichmächtigen Mengen bereits bijektiv ist; die Endlichkeit ist entscheidend!

Liebe Grüße,
UniversellesObjekt

Bezug
                                                                
Bezug
Mächtigkeit von Unterkörper: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:57 Mi 11.11.2015
Autor: maggie123

Nochmal danke, für die schnelle Antwort! Ich glaube ich habe es tatsächlich verstanden.
Wenn ich die von dir definierte Abbildung betrachte und schaue ob diese Injektiv ist, kann ich ja einfach einen Gegenweis machen, also angenommen f wäre nicht Injektiv, dann gibt es n,m mit m =/ n und f(n) = f(m), also

am = an <=> a*(m-n) = 0 und wegen a =/0 folgt, dann m-n = 0. Wenn m =/n und o.B.d.A m>n dann ist p>m-n>0 und dann wäre ja m-n die Charakteristik und nicht p. Also muss m=n und somit f Injektiv sein. Da Z/pZ und L gleichmächtig sind, ist f also auch surjektiv. Dann gibt es aber ein x aus Z/pz so dass gilt: f(z) = 1, also a*z = 1.

Stimmt das so?( Natürlich würde ich das besser aufschreiben, aber bei mir funktionieren die Formeln auf matheraum nicht.)

Du wärst mein Held, wenn das so stimmen sollte!!

Viele Viele Grüße !

Edit: Ja wir haben gezeigt, dass Injektive Abbildung zwischen endlichen, gleichmächtigen Mengen surjektiv ist. Ist natürlich relevant für die Aufgabe

Bezug
                                                                        
Bezug
Mächtigkeit von Unterkörper: Antwort
Status: (Antwort) fertig Status 
Datum: 21:22 Mi 11.11.2015
Autor: UniversellesObjekt


> Nochmal danke, für die schnelle Antwort! Ich glaube ich
> habe es tatsächlich verstanden.
>  Wenn ich die von dir definierte Abbildung betrachte und
> schaue ob diese Injektiv ist, kann ich ja einfach einen
> Gegenweis machen, also angenommen f wäre nicht Injektiv,
> dann gibt es n,m mit m =/ n und f(n) = f(m), also

Kannst du, aber im allgemeinen sind direkte Beweise immer besser (da wo es möglich ist). Viele Studenten (und leider sogar Dozenten und Profs) haben die Angewohnheit alles doppelt und dreifach zu negieren, ohne dass es nötig ist. Das ist aus vielerlei Gründen schlecht.

> am = an <=> a*(m-n) = 0 und wegen a =/0 folgt,

Hier bitte genauer begründen. Wieso folgt das aus [mm] $a\not=0$? [/mm] Welche Eigenschaft verwendest du hier?

>  dann m-n =
> 0.

Du meinst hier wohl [mm] $(m-n)\cdot 1\not=0$. [/mm] Später kann man das [mm] $\cdot [/mm] 1$ weglassen, wenn man mehr Erfahrung hat, bei dieser Aufgabe würde ich es immer dabeibehalten.

> Wenn m =/n und o.B.d.A m>n dann ist p>m-n>0 und dann
> wäre ja m-n die Charakteristik und nicht p. Also muss m=n
> und somit f Injektiv sein. Da Z/pZ und L gleichmächtig
> sind, ist f also auch surjektiv. Dann gibt es aber ein x
> aus Z/pz so dass gilt: f(z) = 1, also a*z = 1.
>
> Stimmt das so?( Natürlich würde ich das besser
> aufschreiben, aber bei mir funktionieren die Formeln auf
> matheraum nicht.)
>  
> Du wärst mein Held, wenn das so stimmen sollte!!

Bis auf die kleinen Anmerkungen ist alles gut. Ich führe noch einmal vor, wie man es "direkt" aufschreibt: Beweis, dass $f$ injektiv ist: Gelte $f(x)=f(y)$ mit [mm] $x,y\in \IL$. [/mm] Das heißt nichts anderes, als $ax=ay$. Subtrahieren und Distributivität liefert $a(x-y)=0$. Hieraus folgt (bitte hier Begründung einsetzen) $x-y=0$, also $x=y$. Dies beweist die Injektivität von [mm] $f\colon\IL\longrightarrow\IL$. [/mm] Da [mm] $\IL$ [/mm] endlich ist, folgt auch die Surjektivität. Insbesondere wird die $1$ getroffen, etwa $f(b)=1$. Das heißt aber nichts anderes als [mm] $a\cdot [/mm] b=1$, also ist $a$ invertierbar in [mm] $\IL$. [/mm]

Liebe Grüße,
UniversellesObjekt

> Viele Viele Grüße !
>  
> Edit: Ja wir haben gezeigt, dass Injektive Abbildung
> zwischen endlichen, gleichmächtigen Mengen surjektiv ist.
> Ist natürlich relevant für die Aufgabe  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de