www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Max. Flächeninhalt Dreieck
Max. Flächeninhalt Dreieck < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Max. Flächeninhalt Dreieck: Aufgabe 1
Status: (Frage) beantwortet Status 
Datum: 13:28 Do 03.07.2014
Autor: Laurilein

Aufgabe
Gegeben ist die Funktion f:f(x)= x²* [mm] e^{2-x} [/mm] ;Def.menge = R

Die Punkte O(0|0), P(u|0) und T(u|f(u)) mit u>0 sind die Eckpunkte des Dreiecks TOP. Finde heraus, für welchen Wert der Parameters u der Flächeninhalt des Dreiecks maximal wird.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danach sollte man noch den Limes für u gegen [mm] \infty [/mm] berechnen.

Ich weiß, dass A = 0,5gh = 0,5* u * f(u)
Aber dann weiß ich nicht weiter.. wie soll ich da jetzt bitte den maximalen Flächeninhalt rausfinden???

LG und DANKE !

        
Bezug
Max. Flächeninhalt Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 13:37 Do 03.07.2014
Autor: fred97


> Gegeben ist die Funktion f:f(x)= x²* [mm]e^{2-x}[/mm] ;Def.menge =
> R
>  
> Die Punkte O(0|0), P(u|0) und T(u|f(u)) mit u>0 sind die
> Eckpunkte des Dreiecks TOP. Finde heraus, für welchen Wert
> der Parameters u der Flächeninhalt des Dreiecks maximal
> wird.
>  Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
>  
> Danach


Wonach ? Nach dem Frühstück ?

> sollte man noch den Limes für u gegen [mm]\infty[/mm]
> berechnen.

Unfug !!!!


>
> Ich weiß, dass A = 0,5gh = 0,5* u * f(u)

Ja, das ist der Flächeninhalt, also

   [mm] A(u)=\bruch{u*f(u)}{2}. [/mm]

Die Aufgabenstellung kann man auch so formulieren:

  bestimme [mm] u_0>0 [/mm] so, dass der Graph der Funktion A in [mm] (u_0|A(u_0)) [/mm] einen Hochpunkt hat.

FRED

> Aber dann weiß ich nicht weiter.. wie soll ich da jetzt
> bitte den maximalen Flächeninhalt rausfinden???
>
> LG und DANKE !  


Bezug
                
Bezug
Max. Flächeninhalt Dreieck: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 14:04 Do 03.07.2014
Autor: Laurilein

Also muss ich die Nullstellen der Ableitung berechnen?

f'(x) = 2x * [mm] e^{2-x} [/mm] + x² * [mm] e^{2-x} [/mm] * (-1)

gleich null setzen: 0 = x * [mm] e^{2-x} [/mm] * (2-x)   (bereits vereinfacht)

und dann bekomme ich zwei nullstellen x1 = 0 und x2 =2

also ist u = 2 damit der flächeninhalt maximal wird?

Bezug
                        
Bezug
Max. Flächeninhalt Dreieck: Antwort
Status: (Antwort) fertig Status 
Datum: 14:18 Do 03.07.2014
Autor: Diophant

Hallo,

> Also muss ich die Nullstellen der Ableitung berechnen?

>

> f'(x) = 2x * [mm]e^{2-x}[/mm] + x² * [mm]e^{2-x}[/mm] * (-1)

>

> gleich null setzen: 0 = x * [mm]e^{2-x}[/mm] * (2-x) (bereits
> vereinfacht)

>

> und dann bekomme ich zwei nullstellen x1 = 0 und x2 =2

>

> also ist u = 2 damit der flächeninhalt maximal wird?

Sorry, aber das hat hier nichts mit einer ernsthaften Arbeitsweise zu tun. Hast du FRED's Antwort gründlich durchgelesen? Nein. Sonst hättest du versucht, seinen Ansatz nachzuvollziehen.

Du benötigst zuerst eine Zielfunktion für die fragliche Fläche. Wenn du diese hast, dann leite ab sund setze die erste Ableitung dieser Zielfunktion gleich Null.


Gruß, Diophant

Bezug
                                
Bezug
Max. Flächeninhalt Dreieck: Rückfrage
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:23 Do 03.07.2014
Autor: Laurilein

Lieber Diophant,

wenn du nichts kannst, außer mir ständig zu sagen, dass ich nicht gründlich arbeite, mir keine Mühe gebe oder lieber mal die antworten nachvollziehen sollte, dann antworte mir bitte nicht mehr. Ich versuche mein bestes und habe momentan echt nur das bedürfnis nach hilfe und nicht nach moralaposteln, die meine arbeitsweise kritisieren. Vielen Dank !

Zudem muss ich mir das ganze thema selber erarbeiten und habe noch nie etwas von dem wort ziefunktion gehört.



Bezug
                                        
Bezug
Max. Flächeninhalt Dreieck: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:30 Do 03.07.2014
Autor: fred97


> Lieber Diophant,
>
> wenn du nichts kannst, außer mir ständig zu sagen, dass
> ich nicht gründlich arbeite, mir keine Mühe gebe oder
> lieber mal die antworten nachvollziehen sollte,

Auch ich muss sagen, dass Du antworten , die man Dir gibt überhaupt nicht richtig wahrnimmst !



> dann
> antworte mir bitte nicht mehr. Ich versuche mein bestes

Tatsächlich ? Ich hab Dir oben gesagt, dass es um das Maximum diesr Funktion geht:

  

   $ [mm] A(u)=\bruch{u\cdot{}f(u)}{2}. [/mm] $

Warum , in Gottes Namen, bearbeitest Du dann die Funktion f ????


Wenn Du mich zum Bäcker schickst, damit ich Dir ein Kürbiskernbrot kaufe (und das schreibst Du mir deutlich lesbar auf einen Zettel), so würde ich von Dir sicherlich einen Anschiss bekommen, wenn ich mit fettigen Bratwürsten ankäme, stimmts ?

FRED


> und
> habe momentan echt nur das bedürfnis nach hilfe und nicht
> nach moralaposteln, die meine arbeitsweise kritisieren.
> Vielen Dank !
>
> Zudem muss ich mir das ganze thema selber erarbeiten und
> habe noch nie etwas von dem wort ziefunktion gehört.
>
>  


Bezug
                                        
Bezug
Max. Flächeninhalt Dreieck: Über Sinn und Unsinn
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:35 Do 03.07.2014
Autor: Diophant

Hallo,

> Lieber Diophant,

>

> wenn du nichts kannst, außer mir ständig zu sagen, dass
> ich nicht gründlich arbeite, mir keine Mühe gebe oder
> lieber mal die antworten nachvollziehen sollte, dann
> antworte mir bitte nicht mehr.

Ok. Es ist deine Zeit, die dabei draufgeht, nicht meine.

> Ich versuche mein bestes

Das glaube ich dir schlichtweg nicht.
 

> habe momentan echt nur das bedürfnis nach hilfe und nicht
> nach moralaposteln, die meine arbeitsweise kritisieren.

Das hast du falsch verstanden. Es hat mit Moral nichts zu tun, sondern wenn man so wie du oben getan hast an die Mathematik herangeht, darf man sich nicht wundern, wenn es nicht klappt. Klarer ausgedrückt: das ist zum Scheitern verurteilt, auf der anderen Seite gibt es halt auch einen Weg, auf dem man weiterkommt. Und dieser Weg stünde eigentlich jedem offen...

Und dann solltest du dich vielleicht nochmal mit Sinn und Zweck unseres Forums auseinandersetzen, dann verstehst du meine Reaktion vielleicht ein Stück weit.


Gruß, Diophant  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 09m 6. Tipsi
IntTheo/Flächenmaß berechnen
Status vor 4h 23m 10. HJKweseleit
GraphTheo/Hyperwürfel teilen
Status vor 8h 23m 1. omarco
RT/Z-Transformation
Status vor 8h 44m 3. matux MR Agent
UAlgGRK/Ringerweiterung
Status vor 8h 45m 2. Gonozal_IX
MaßTheo/Fast überall
^ Seitenanfang ^
www.vorhilfe.de