www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Maximale Fläche
Maximale Fläche < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximale Fläche: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:36 Mi 06.01.2016
Autor: DerChemiker_

Aufgabe
Bitte helft mir bei dieser Extremwertaufgabe, ich komme einfach nicht weiter, bzw weiß nicht einmal wie man ansetzen sollte.

Beim Zuschneiden einer Granitplatte ist eine Ecke abgebrochen. Aus dem verbleibenden Stück soll eine rechteckige Platte mit max. Fläche ausgeschnitten werden.
1) Gib an, wie groß die maximale Fläche der verbleibenden rechteckigen Platte ist, wenn b = 62cm.
2) Wie verändert sich die Fläche wenn b1 = 19cm bzw. b2= 41cm gewählt wird?
3)Für welche Werte von b erhält man ein Randmaximum? Wie muss die Platte dann zugeschnitten werden, damit die verbleibende rechteckige Platte möglichst groß ist?

Ich hoffe dass ihr mir helfen könnt, es ist eine der "schweren" Aufgaben aus meinem Buch.

Ist es hilfreich wenn man die Fläche und Maße des Dreiecks weiß? Für 1) kann man ja schonmal über den Kosinussatz die Hypothenuse c ausrechnen (wäre 42,94cm). Weiter komme ich nicht, keine Ahnung was man tun muss.

Wie um alles in der Welt soll ich das angehen. Wir haben das Thema erst kürzlich angefangen und keiner hat eine Ahnung. Bitte helft mir und zeigt mir einen verständlichen Lösungsweg.
Danke
Bild: http://imgur.com/L44u8vQ

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:http://www.onlinemathe.de/forum/Anwendung-der-Differntialrechnung

Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Maximale Fläche: Antwort
Status: (Antwort) fertig Status 
Datum: 18:51 Mi 06.01.2016
Autor: sandroid


Hallo Chemiker,

Als freie Variable $x$ würde ich die Breite einer der beiden Streifen nehmen, die abgesägt werden, z.B. den in der Skizze linken Rand. Dann suchst du also den optimalen Wert für x zwischen 0 und 20 cm, so dass der Flächeninhalt größtmöglich wird.

Du suchst zunächst also die Funktion $f(x)$, die dir den Flächeninhalt deiner Platte in Abhängigkeit von $x$ gibt. Dann nach dem üblichen Verfahren: Extremstellen suchen, Randwerte prüfen etc... .

Wie also kommst du auf $f(x)$? Ich denke, dass das der Punkt ist, wo du hängst. Ganz primitiv gilt ja $Fläche = Breite * Höhe$. Die Breite in Abhängigkeit von $x$ ist einfach: $Breite = 65 - x$. Der etwas kniffligere Teil ist also die Höhe.

Überlege nun, wie du mit deinen trigonometrischen Methoden diese in Abhängigkeit von $x$ formulieren kannst.

Gruß,
Sandro


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 42m 2. Al-Chwarizmi
DiffGlGew/Erstes Integral
Status vor 2h 51m 9. Diophant
UStoc/Stochastische Unabhängigkeit
Status vor 5h 06m 4. Al-Chwarizmi
UAlgGRK/Menge in der Potenz
Status vor 6h 04m 3. mediboi
UBauW/Zuggurtungsprinzip? Synonyme?
Status vor 13h 37m 7. Diophant
STrigoFktn/cos2(x)=sin2(2x)
^ Seitenanfang ^
www.vorhilfe.de