www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Regelungstechnik" - Ortskurve
Ortskurve < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ortskurve: zeichnung
Status: (Frage) beantwortet Status 
Datum: 18:20 So 17.05.2015
Autor: Lan21

Aufgabe
Hallo ich habe gerade probleme bei dieser Aufgabe:

Gegeben sei die Übertragungsfunktion

G(s) = [mm] \bruch{K}{s^2} [/mm]

Skizzieren Sie qualitativ die Ortskurven der Übertragungsglieder. Berechnen Sie dazu die Anfangs- und
Endpunkte sowie die Schnittpunkte mit den Achsen (reelle und imaginäre).

Ich habe zuerst einmal

G(jw) = [mm] \bruch{K}{(jw)^2} [/mm] = - [mm] \bruch{K}{w^2} [/mm]

Jetzt wollte ich den Anfangswert bestimmen
Es gibt ja nur den Realteil , also
w= 0
G(0) =- [mm] \bruch{K}{0^2} [/mm] = wäre das gleich 0 ?

Ich hoffe ihr könnt mir bei der weiteren Vorgehensweise helfen.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ortskurve: Achtung Division
Status: (Antwort) fertig Status 
Datum: 18:26 So 17.05.2015
Autor: Infinit

Hallo Lan21,
willkommen hier im Forum.
Das Ersetzen der Variablen s durch [mm] j \omega [/mm] hast Du ja schon gemacht, aber überlege Dir bitte nochmal, welche Werte solch ein Bruch für positive Frequenzen annimmt, wenn diese Frequenzen im Nenner stehen und immer kleiner und kleiner werden. Was passiert dann mit dem Wert des Bruchs?
Viele Grüße,
Infinit

Bezug
                
Bezug
Ortskurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:31 So 17.05.2015
Autor: Lan21

Auch für positive Werte für der Bruch jeweils gegen - unendlich gehen ,da ja - vor dem Bruch steht.

Der nenner geht ja schneller gegen 0 wegen dem Quadrat im Zähler oder ?

Bezug
                        
Bezug
Ortskurve: Antwort
Status: (Antwort) fertig Status 
Datum: 18:50 So 17.05.2015
Autor: Infinit

Hallo,
ja, so ist es. Die Kurve kommt also von [mm] - \infty [/mm], die Omega-Achse schneidet sie nicht und schmiegt sich "von unten" an die Omega-Achse an.
Viele Grüße,
Infinit

Bezug
                                
Bezug
Ortskurve: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:11 So 17.05.2015
Autor: Lan21

Kann man das so zeichnen?



Dateianhänge:
Anhang Nr. 1 (Typ: JPG) [nicht öffentlich]
Bezug
                                        
Bezug
Ortskurve: Antwort
Status: (Antwort) fertig Status 
Datum: 19:28 So 17.05.2015
Autor: Infinit

Das wohl kaum, wenn die waagrechte Achse die Omega-Achse sein soll und der Ursprung des Achsenkreuzes bei [mm] \omega = 0 [/mm] liegen soll. Schiebe die Kurve nach rechts rüber und lasse sie gegen die Omega-Achse mit wachsenden Werten auslaufen.
Viele Grüße,
Infinit

Bezug
                                                
Bezug
Ortskurve: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:31 So 17.05.2015
Autor: Lan21

Alles klar danke.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 24m 2. matux MR Agent
SStatHypo/Welche Verfahren wählen?
Status vor 45m 7. Diophant
ULinASon/Lineare Optimierung
Status vor 18h 40m 3. leduart
SPoWi/Produktionsfunktion zeichnen
Status vor 21h 18m 7. Diophant
Tabellenkalkulationen/WENN DANN Excel
Status vor 21h 41m 2. fred97
UAnaR1FunkDiff/Polynomfunktion differenzierba
^ Seitenanfang ^
www.vorhilfe.de