www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Maßtheorie" - Sigma-Endlich
Sigma-Endlich < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Sigma-Endlich: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:18 Di 07.11.2017
Autor: TheBozz-mismo

Aufgabe
Sei [mm] (\Omega,A,\mu) [/mm] ein Massraum und [mm] (f_n)_{n \in \IN\} [/mm] eine Folge Borel-messbarer, [mm] \mu- [/mm] integrierbarer Funktionen [mm] f_n:\Omega [/mm] -> [mm] \IR, [/mm] die gleichmäßig gegen eine Grenzfunktion f: [mm] \Omega [/mm] -> [mm] \IR [/mm] konvergiert. Dann gilt

a) Ist [mm] \mu [/mm] endlich, so ist f [mm] \mu-integrierbar. [/mm]
b) Ist [mm] \mu \sigma-endlich, [/mm] so ist f im Allgemeinen nicht [mm] \mu-integrierbar [/mm]
c) Ist [mm] \mu \sigma-endlich [/mm] und f [mm] \mu-integrierbar, [/mm] muss [mm] \limes_{n\rightarrow\infty} \integral_{}^{}{f_n d\mu}=\integral_{}^{}{f d\mu} [/mm] im Allgemeinen nicht gelten.

Hallo zur späten Stunde.
Hier eine Aufgabe, die mir ein wenig Probleme bereitet.
Meine Ansätze:
a) f als punktweiser Grenzwert messbarer Funktionen wieder messbar. Da f gleichmäßigen Grenzwert einer beschränkten Funktion hat, ist f selbst auch beschränkt und unter der Vor, dass [mm] \mu \sigma-endlich [/mm] ist, folgt die Aussage.
Ist das richtig so und denkt ihr, das reicht so?

b)  Hier muss ich ein Gegenbeispiel bringen und da würde ich die Funktionenfolge [mm] f_n:=\bruch{1}{n}1_{0,n} [/mm] mit n größer gleich 0, wobei 1 die Indikatorfunktion darstellt (Habe das Symbol für die Indikatorfunktion im Editor nicht gefunden).
Dann gilt:
[mm] -f_n [/mm] ist messbar, da [mm] \bruch{1}{n} [/mm] konstante Funktion ist und (0,n) [mm] \in B(\IR) [/mm] auch messbar und das Produkt zweier messbaren Funktionen wieder messbar ist
[mm] -f_n [/mm] ist beschränkt, da [mm] |f(x)|\le \bruch{1}{n} [/mm] für alle x aus [mm] \IR [/mm]
[mm] -f_n [/mm] konvergiert gleichmäßig gegen 0, da für [mm] |f(x)|\le \bruch{1}{n} [/mm]  gegen 0 geht für n gegen [mm] \infty, [/mm] aber [mm] \integral_{\IR}^{}{f_n d\mu} [/mm] = 1 und somit
[mm] \integral_{\IR}^{}{f_n d\mu} [/mm] konvergiert nicht gleichmäßig gegen 0 und es gilt [mm] \integral_{\IR}^{}{f_n d\mu} =0*\mu(\IR)=0*\infty= [/mm] 0

Für c) benötige ich ja wieder ein Beispiel, aber habe keine Idee. Wir haben eine Hilfssatz in der Vorlesung gehabt, dessen Resultat die monotone Konvergenz war, was ja eigentlich die Gleichheit dieser zwei Ausdrücke zeigt. Also Voraussetzung wurde [mm] f_1 \le f_2 \le [/mm] ... vorausgesetzt. Muss man damit vielleicht arbeiten. Also vielleicht ne alternierende Folge konstruieren?

Lieben Gruß

TheBozz-mismo

        
Bezug
Sigma-Endlich: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Do 09.11.2017
Autor: Gonozal_IX

Hiho,

>  a) f als punktweiser Grenzwert messbarer Funktionen wieder messbar.

[ok]

> Da f gleichmäßigen Grenzwert einer beschränkten Funktion hat ist f selbst auch beschränkt

Damit hättest du recht, wenn die [mm] $f_n$ [/mm] als beschränkt vorausgesetzt wären.
Sind sie aber nicht… du hast es dir also leicht gemacht und einfach eine nicht gegebene Voraussetzung reingeschummelt.
Neuer Versuch bitte!

> b)  Hier muss ich ein Gegenbeispiel bringen und da würde
> ich die Funktionenfolge [mm]f_n:=\bruch{1}{n}1_{0,n}[/mm] mit n
> größer gleich 0, wobei 1 die Indikatorfunktion darstellt
> (Habe das Symbol für die Indikatorfunktion im Editor nicht
> gefunden).
>  Dann gilt:
> [mm]-f_n[/mm] ist messbar

[ok]

>  [mm]-f_n[/mm] ist beschränkt, da [mm]|f(x)|\le \bruch{1}{n}[/mm] für alle x aus [mm]\IR[/mm]

[ok]

>  [mm]-f_n[/mm] konvergiert gleichmäßig gegen 0, da für [mm]|f(x)|\le \bruch{1}{n}[/mm]

[ok]
Und jetzt wird es wüst…

>  aber [mm]\integral_{\IR}^{}{f_n d\mu}[/mm] = 1

Wieso aber?

> und somit [mm]\integral_{\IR}^{}{f_n d\mu}[/mm] konvergiert nicht
> gleichmäßig gegen 0

Das stimmt zwar, aber bringt dir hier ja gar nix.
Bei b) sollst du zeigen, dass die Grenzfunktion f selbst nicht integrierbar sein muss. Was ist denn hier deine Grenzfunktion f?
Ist diese integrierbar?

Für c) schau dir mal dein Beispiel für b) an (was für b) nix bringt).

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 04m 4. Diophant
UStoc/Geordnete Stichproben mit Wdh.
Status vor 1h 26m 60. Diophant
MSons/Kann man beim Roulette verlier
Status vor 1h 31m 7. matux MR Agent
Algebra/Integritätsbereich Polynomring
Status vor 4h 31m 3. matux MR Agent
Logik/Reduktion
Status vor 7h 16m 4. fred97
ULinAAb/Permutationsgr./ Transposition
^ Seitenanfang ^
www.vorhilfe.de