www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Integralrechnung" - Stammfunktion/Integralfunktion
Stammfunktion/Integralfunktion < Integralrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion/Integralfunktion: Abgrenzung
Status: (Frage) beantwortet Status 
Datum: 19:34 Mo 20.11.2017
Autor: Paul88


Hallo zusammen,

kann man, unabhängig von der unterschiedlichen Definition der Funktionen und eine Unterscheidung über die Definitionen, anschaulich sagen, dass Stammfunktionen die Menge aller Integralfunktionen zu stetigen Funktionen f sind, oder habe ich dann irgendetwas nicht berücksichtigt?

Gruß
Paul88

        
Bezug
Stammfunktion/Integralfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:04 Mo 20.11.2017
Autor: Diophant

Hallo,

> kann man, unabhängig von der unterschiedlichen Definition
> der Funktionen und eine Unterscheidung über die
> Definitionen, anschaulich sagen, dass Stammfunktionen die
> Menge aller Integralfunktionen zu stetigen Funktionen f
> sind, oder habe ich dann irgendetwas nicht
> berücksichtigt?

solange die Integralfunktionen die  übliche Form

[mm]J_1(x)= \int_{a}^{x}{f(t) dt}=F(x)-F(a)[/mm]

haben, ist deine Aussage offensichtlich korrekt. Ich sehe aber nicht so ganz, was der Erkenntnisgewinn dabei ist.

Nimm aber mal als Gegenbeispiel

[mm]J_2(x)= \int_{x}^{a}{f(t) dt}=F(a)-F(x)[/mm].

Hier ist die Integralfunktion keine Stammfunktion von f(x).


Gruß, Diophant
 

Bezug
        
Bezug
Stammfunktion/Integralfunktion: Antwort
Status: (Antwort) fertig Status 
Datum: 23:05 Mo 20.11.2017
Autor: Gonozal_IX

Hiho,

> kann man, unabhängig von der unterschiedlichen Definition
> der Funktionen und eine Unterscheidung über die
> Definitionen, anschaulich sagen, dass Stammfunktionen die
> Menge aller Integralfunktionen zu stetigen Funktionen f
> sind

Das kommt darauf an, wie ihr Stammfunktion definiert habt.

> oder habe ich dann irgendetwas nicht berücksichtigt?

Ja, geht man beispielsweise nach der []Stammfunktionsdefinition bei Wikipedia, dann ist eine Stammfunktion zu f eine differenzierbare Funktion F, so dass $F'=f$ gilt. Das ist meines Wissens auch die gängige Definition.

Nun ist $F(x) = [mm] \begin{cases} x^2\sin\left(\frac{1}{x}\right), & x\not= 0 \\ 0, & x=0 \end{cases}$ [/mm] offensichtlich eine Stammfunktion zu $f(x) = [mm] \begin{cases} 2x\sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) & x\not=0 \\ 0 & x=0 \end{cases}$, [/mm] f ist nicht stetig und F lässt sich nicht als "Integralfunktionen zu [einer] stetigen Funktionen f" darstellen.


Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integralrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 12m 1. riju
UStoc/Bayesscher Rand
Status vor 8h 45m 3. Tabs2000
UAnaR1FunkDiff/Ableiten einer Doppelsumme
Status vor 8h 52m 12. Gonozal_IX
MaßTheo/Messbarkeit
Status vor 11h 24m 10. donquijote
UAnaRn/Satz über implizite Funktionen
Status vor 12h 54m 9. rabilein1
S5-7/Maßband-Ausschnitt
^ Seitenanfang ^
www.vorhilfe.de