www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit einer Funktion
Stetigkeit einer Funktion < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit einer Funktion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:31 Mo 05.05.2014
Autor: Petrit

Aufgabe
[mm] f:\IR [/mm] \ [mm] \{1\} \to \IR, [/mm] f(x)= [mm] \bruch{x^n-1}{x-1}, [/mm] wobei [mm] n\in \IN [/mm] fest, aber beliebig sei; und [mm] x_{0}=1. [/mm]

Hi!
Ich hab mal eine Frage zu dieser Aufgabe und zwar muss ich ja hier auf Stetigkeit überprüfen, dass heißt, ich muss den oberen, sowie den unteren Grenzwett bestimmen und wenn die beiden gleich sind, ist meine Funktion ja stetig. Nun habe ich durch versuchen heruagefunden, dass mein Grenzwert für [mm] x\to x_{0}, [/mm] also [mm] x\to [/mm] 1 gleich n sein muss.
Meine Frage ist allerdings, wie ich zeigen kann, dass mein Grenzwert tatsächlich n ist.
Ich hoffe, mir kann da jemand ein bisschen Licht ins Dunkel bringen. Ich habe mir sowas wie Primfaktorzerlegeung gedacht, und zwar, dass ich (x-1) im Zähler irgendwie ausklammern kann, damit sich dies kürzt. Ich komme allerdings nicht drauf, wie man das machen könnte.
Ich hoffe, ihr könnt mir da Hinweise/Tipps geben.
Ich würde mich wirklich freuen.

Viele Grüße, Petrit!

        
Bezug
Stetigkeit einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 22:40 Mo 05.05.2014
Autor: abakus


> [mm]f:\IR[/mm] \ [mm]\{1\} \to \IR,[/mm] f(x)= [mm]\bruch{x^n-1}{x-1},[/mm] wobei [mm]n\in \IN[/mm]
> fest, aber beliebig sei; und [mm]x_{0}=1.[/mm]
> Hi!
> Ich hab mal eine Frage zu dieser Aufgabe und zwar muss ich
> ja hier auf Stetigkeit überprüfen, dass heißt, ich muss
> den oberen, sowie den unteren Grenzwett bestimmen und wenn
> die beiden gleich sind, ist meine Funktion ja stetig. Nun
> habe ich durch versuchen heruagefunden, dass mein Grenzwert
> für [mm]x\to x_{0},[/mm] also [mm]x\to[/mm] 1 gleich n sein muss.
> Meine Frage ist allerdings, wie ich zeigen kann, dass mein
> Grenzwert tatsächlich n ist.

Hallo,
für den Term [mm]\bruch{x^n-1}{x-1}[/mm] kannst du eine Polynomdivision durchführen und erhältst als Ergebnis [mm] $x^{n-1}+x^{n-2}+...+x^2+x+1$. [/mm]
Wenn x gegen 1 geht, sind das n Summanden mit dem jeweiligen Wert 1.
Aber auch ohne Polynomdivision weiß man (???), dass das eine sehr bekannte Summenformel ist.
Gruß Abakus

> Ich hoffe, mir kann da jemand ein bisschen Licht ins
> Dunkel bringen. Ich habe mir sowas wie Primfaktorzerlegeung
> gedacht, und zwar, dass ich (x-1) im Zähler irgendwie
> ausklammern kann, damit sich dies kürzt. Ich komme
> allerdings nicht drauf, wie man das machen könnte.
> Ich hoffe, ihr könnt mir da Hinweise/Tipps geben.
> Ich würde mich wirklich freuen.

>

> Viele Grüße, Petrit!

Bezug
        
Bezug
Stetigkeit einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 07:45 Di 06.05.2014
Autor: fred97


> [mm]f:\IR[/mm] \ [mm]\{1\} \to \IR,[/mm] f(x)= [mm]\bruch{x^n-1}{x-1},[/mm] wobei [mm]n\in \IN[/mm]
> fest, aber beliebig sei; und [mm]x_{0}=1.[/mm]
>  Hi!
>  Ich hab mal eine Frage zu dieser Aufgabe und zwar muss ich
> ja hier auf Stetigkeit überprüfen, dass heißt, ich muss
> den oberen, sowie den unteren Grenzwett bestimmen und wenn
> die beiden gleich sind, ist meine Funktion ja stetig. Nun
> habe ich durch versuchen heruagefunden, dass mein Grenzwert
> für [mm]x\to x_{0},[/mm] also [mm]x\to[/mm] 1 gleich n sein muss.
>  Meine Frage ist allerdings, wie ich zeigen kann, dass mein
> Grenzwert tatsächlich n ist.
>  Ich hoffe, mir kann da jemand ein bisschen Licht ins
> Dunkel bringen. Ich habe mir sowas wie Primfaktorzerlegeung
> gedacht, und zwar, dass ich (x-1) im Zähler irgendwie
> ausklammern kann, damit sich dies kürzt. Ich komme
> allerdings nicht drauf, wie man das machen könnte.
>  Ich hoffe, ihr könnt mir da Hinweise/Tipps geben.
> Ich würde mich wirklich freuen.

Die Funktion f ist in [mm] x_0=1 [/mm] nicht definiert ! Daher ist die Frage nach der Stetigkeit von f in [mm] x_0=1 [/mm] sinnlos !

Eine sinnvolle Frage wäre:

    kann man  f auf [mm] \IR [/mm] stetig fortsetzen ?

Die Antwort ist "ja", falls [mm] \limes_{x\rightarrow 1}f(x) [/mm] existiert, anderenfalls "nein".

Zu  [mm] \limes_{x\rightarrow 1}f(x) [/mm]  hat Abakus Dir das entscheidende gesagt.

FRED

>  
> Viele Grüße, Petrit!


Bezug
        
Bezug
Stetigkeit einer Funktion: Alternative
Status: (Antwort) fertig Status 
Datum: 11:30 Di 06.05.2014
Autor: Roadrunner

Hallo Petrit!


Zur Bestimmung des gesuchten Grenzwertes kann man als (wenn auch etwas brutale) Alternative den Herrn de l'Hospital zu Rate ziehen.


Gruß vom
Roadrunner

Bezug
        
Bezug
Stetigkeit einer Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 11:34 Di 06.05.2014
Autor: fred97

Ncht ganz so brutal wie l'Hospital ist folgender Weg:

Setzt [mm] g(x):=x^n. [/mm] Dann ist

$ [mm] \bruch{x^n-1}{x-1}=\bruch{g(x)-g(1)}{x-1} \to [/mm] g'(1)=n$  für $ x [mm] \to [/mm] 1$

FRED

Bezug
                
Bezug
Stetigkeit einer Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:42 Di 06.05.2014
Autor: Petrit

Alles klar, super.
Vielen Dank.

Gruß Petrit!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de