www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Induktionsbeweise" - Summe
Summe < Induktion < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Summe: n+1
Status: (Frage) beantwortet Status 
Datum: 14:57 So 27.03.2016
Autor: b.reis

Aufgabe
Beweisen Sie durch vollständige Induktion die folgende Formel.

[mm] \summe_{k=1}^{n} k^2 [/mm] = [mm] \bruch{n(n+1)(2n+1)}{6} [/mm]



Hallo,

Mein Induktionsanfang sieht so aus,

n=1

[mm] \summe_{k=1}^{n} k^2 [/mm] = [mm] \bruch{1(1+1)((2*1)+1)}{6} =\bruch{6}{6}=1 [/mm]

---> n=1=n

Beim zweiten Induktionsschritt gilt n=n+1

Zu zeigen ist:

[mm] \summe_{k=1}^{n+1} k^2 [/mm] = [mm] \bruch{(n+1)((n+1)+1)(2(n+1)+1}{6} [/mm]

Für n gilt [mm] n=K^2 [/mm]

Stimmt das soweit ?

Das nächste Gleid in der Induktion ist n+1, wenn n [mm] =k^2 [/mm] dann ist das nächste Glied n+1

Also gilt n+(n+1) [mm] =k^2+(n+1) [/mm]

Aus dem Induktionsanfang weiß ich, dass für n =1 gilt: [mm] \bruch{6}{6}=k^2 [/mm]
[mm] k^2 [/mm] (für n) + [mm] (k^2) [/mm] (_für_ n+1)
somit gilt auch [mm] \bruch{6(n+1)}{6} [/mm] denn hier steckt die 1 als n drin und [mm] k^2 [/mm] und somit ist

[mm] \summe_{k=1}^{n} k^2 [/mm] = [mm] \bruch{n(n+1)(2n+1)}{6}+ \bruch{6(n+1)}{6} [/mm]

Stimmt das so und auch meine Erklärung dazu ?

Vielen Dank

Benni


        
Bezug
Summe: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 So 27.03.2016
Autor: Fulla


> Beweisen Sie durch vollständige Induktion die folgende
> Formel.

>

> [mm]\summe_{k=1}^{n} k^2[/mm] = [mm]\bruch{n(n+1)(2n+1)}{6}[/mm]

>
>

> Hallo,

>

> Mein Induktionsanfang sieht so aus,

>

> n=1

>

> [mm]\summe_{k=1}^{n} k^2[/mm] = [mm]\bruch{1(1+1)((2*1)+1)}{6} =\bruch{6}{6}=1[/mm]

Hallo Benni,

na ja, du hast [mm]n=1[/mm] in die Gleichung eingesetzt und es kommt auf der rechten Seite Eins raus. Was soll uns das sagen?

Bei Induktionsaufgaben solltest du dir - gerade am Anfang noch - jeden einzelnen Schritt bewusst machen.

Was du beim Induktionsanfang für [mm]n=1[/mm] eigentlich zeigen musst, ist:
- Linke Seite: [mm]\sum_{k=1}^1 k^2 =1^2=1[/mm]
- Rechte Seite: [mm]\bruch{1(1+1)((2*1)+1)}{6} =\bruch{6}{6}=1[/mm]
--> Passt also.


> ---> n=1=n

Was soll das heißen?

> Beim zweiten Induktionsschritt gilt n=n+1

Diese Formulierung hat mich schon bei einer früheren Aufgabe von dir gestört. Besser wäre: Induktionsschritt [mm]n\to n+1[/mm]. (Und es gibt nur "den" Induktionsschritt.)

Was du aber völlig auslässt, ist die Induktionsvoraussetzung:
Für ein beliebiges [mm]n\in\mathbb N[/mm] sei die Aussage [mm]\sum_{k=1}^n k^2=\frac{n(n+1)(2n+1)}{6}[/mm] bereits bewiesen.

Darauf musst du dich nämlich im Induktionsschritt beziehen!

> Zu zeigen ist:

>

> [mm]\summe_{k=1}^{n+1} k^2[/mm] =
> [mm]\bruch{(n+1)((n+1)+1)(2(n+1)+1}{6}[/mm]

>

> Für n gilt [mm]n=K^2[/mm]

>

> Stimmt das soweit ?

>

> Das nächste Gleid in der Induktion ist n+1, wenn n [mm]=k^2[/mm]
> dann ist das nächste Glied n+1

>

> Also gilt n+(n+1) [mm]=k^2+(n+1)[/mm]

>

> Aus dem Induktionsanfang weiß ich, dass für n =1 gilt:
> [mm]\bruch{6}{6}=k^2[/mm]
> [mm]k^2[/mm] (für n) + [mm](k^2)[/mm] (_für_ n+1)
> somit gilt auch [mm]\bruch{6(n+1)}{6}[/mm] denn hier steckt die 1
> als n drin und [mm]k^2[/mm] und somit ist

>

> [mm]\summe_{k=1}^{n} k^2[/mm] = [mm]\bruch{n(n+1)(2n+1)}{6}+ \bruch{6(n+1)}{6}[/mm]

>

> Stimmt das so und auch meine Erklärung dazu ?

Sehr... holprig....
Nochmal ganz langsam zum Mitschreiben.

Wir wissen, für [mm]n=1[/mm] gilt die Gleichung. (IA)
Für irgendein [mm]n\in\mathbb N[/mm] auch. (IV)
Jetzt kommt der Induktionsschritt (IS), bei dem wir die IV verwenden wollen.

[mm]\sum_{k=1}^{n+1}k^2=\red{\sum_{k=1}^{n}k^2} +(n+1)^2\stackrel{(IV)}{=}\red{\frac{n(n+1)(2n+1)}{6}}+(n+1)^2[/mm]

Dabei wurde die rote Summe gemäß Induktionsvoraussetzung ersetzt. Forme jetzt in der Gleichungskette weiter um, bis bei [mm]\frac{(n+1)(n+2)(2n+3)}{6}[/mm] rauskommst. (Du weißt ja schon, wo du hin willst. Es soll ja der Term rauskommen, wenn du [mm]n+1[/mm] statt [mm]n[/mm] auf der rechten Seite ganz oben einsetzt.)

Lieben Gruß,
Fulla

Bezug
                
Bezug
Summe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:57 Di 29.03.2016
Autor: b.reis

Hallo, danke für die Antwort.

Ich konnte nicht gleich antworten, da ich noch ein paar Videos zum Thema ansehen musste.

$ [mm] \sum_{k=1}^{n+1}k^2=\red{\sum_{k=1}^{n}k^2} +(n+1)^2\stackrel{(IV)}{=}\red{\frac{n(n+1)(2n+1)}{6}}+(n+1)^2 [/mm] $

Also

[mm] {\frac{n(n+1)(2n+1)}{6}}+(n+1)^2 [/mm] =$ [mm] \bruch{(n+1)(n+2)(2n+3)}{6} [/mm] $

Das ist eine Gleichung und wenn man auf beiden Seiten *6 nimmt ist der Bruch weg und dann geht die Gleichung auf, aber das Getippe spar ich mir jetzt.


Vielen Dank

Benni


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Induktionsbeweise"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de