www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Transformationsformel
Transformationsformel < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Transformationsformel: Korrektur
Status: (Frage) beantwortet Status 
Datum: 14:31 Do 28.08.2014
Autor: Orchis

Aufgabe
In meinem Skript habe ich die folgende Gleichung gegeben, die ich mittels der Transformationsformel für Gebietsintegrale zur Übung gerne mal ausrechnen würde:

[mm] \displaystyle \frac{1}{n \alpha(n) r^{n-1}} \int\limits_{\partial B(x,r)} [/mm] u(s) [mm] \, \mathrm{d}s [/mm] = [mm] \displaystyle \frac{1}{n \alpha(n)} \displaystyle\int\limits_{\partial B(0,1)} [/mm] u(x + rz) [mm] \, \mathrm{d}z. [/mm]


Wobei

[mm] \frac{1}{n \alpha(n) r^{n-1}} \int\limits_{\partial B(x,r)} [/mm] u(s) [mm] \, \mathrm{d}s [/mm]

der Mittelwert von u über die Sphähre [mm] \partial [/mm] B(x,r) mit Radius r>0 und Mittelpunkt x [mm] \in \mathbb{R}^n [/mm] ist. Dabei ist [mm] \alpha(n) [/mm] das Volumen der n-dimensionalen Einheitskugel.

Hallo! :)
Wie oben schon beschrieben würde ich gerne die Trafo. richtig anwenden, bekomme aber immer einen kleinen Fehler dabei rein. Also:

Batrachte den Diffeomorphismus [mm] \phi:\partial [/mm] B(0,1) [mm] \rightarrow \partial [/mm] B(x,r) mit z [mm] \mapsto [/mm] x + rz. Die Funktionaldeterminante ist gegeben durch

|det [mm] J_{\phi}(z)| [/mm] = [mm] \begin{vmatrix} r & & 0 \\ & ... & & \\ 0 & & r \end{vmatrix}= r^n. [/mm]


Wende nun die Transformationsformel für Gebietsintegrale an


[mm] \displaystyle \frac{1}{n \alpha(n) r^{n-1}} \int\limits_{\partial B(x,r)} [/mm] u(s) [mm] \, \mathrm{d}s =\displaystyle \frac{1}{n \alpha(n) r^{n-1}} \int\limits_{\partial B(x,r)} [/mm] u(s) [mm] \, \mathrm{d}s [/mm]

[mm] \overset{Trafo}{=}\displaystyle \frac{1}{n \alpha(n) r^{n-1}} \int\limits_{\phi^{-1}(\partial B(x,r))} u(\phi(z)) \cdot [/mm] |det [mm] J_{\phi}(z)| \, \mathrm{d}z [/mm]


[mm] =\displaystyle \frac{1}{n \alpha(n) r^{n-1}} \int\limits_{\partial B(0,1)} [/mm] u(x + rz) [mm] \cdot r^n \, \mathrm{d}z [/mm]

[mm] =\displaystyle \frac{r}{n \alpha(n)} \int\limits_{\partial B(0,1)} [/mm] u(x + rz) [mm] \, \mathrm{d}z [/mm]
und hier ist halt ein "r" zu viel dabei...ich mache irgendwas falsch, nur was?
Vielen Dank schon mal, falls sich das hier jemand durchliest!!!

Viele Grüße,
Orchis

        
Bezug
Transformationsformel: Antwort
Status: (Antwort) fertig Status 
Datum: 08:11 Fr 29.08.2014
Autor: fred97

In der Gleichung



$ [mm] \displaystyle \frac{1}{n \alpha(n) r^{n-1}} \int\limits_{\partial B(x,r)} [/mm] $ u(s) $ [mm] \, \mathrm{d}s [/mm] $ = $ [mm] \displaystyle \frac{1}{n \alpha(n)} \displaystyle\int\limits_{\partial B(0,1)} [/mm] $ u(x + rz) $ [mm] \, \mathrm{d}z [/mm] $

stehen rechts und links keine Gebietsintegrale sondern Oberflächenintegrale !!

Dein Fehler war also: Du wendest einen Satz für Gebietsintegrale auf Oberflächenintegrale an. Das kann nicht gutgehen !


Wären es Gebietsintegrale, so wäre obige Gleichung trivial, denn [mm] \partial [/mm] B(x,r) und [mm] \partial [/mm] B(0,1) sind Nullmengen im [mm] \IR^n [/mm] und damit sind beide Integrale =0.


FRED

Bezug
                
Bezug
Transformationsformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:12 Mo 01.09.2014
Autor: Orchis

Ahhh, ok. Dann weiß ich nur nicht, wie man die Gleichheit denn nun zeigt. Hat jemand einen Tipp für mich?

Bezug
                        
Bezug
Transformationsformel: Antwort
Status: (Antwort) fertig Status 
Datum: 12:55 Mo 01.09.2014
Autor: fred97


> Ahhh, ok. Dann weiß ich nur nicht, wie man die Gleichheit
> denn nun zeigt. Hat jemand einen Tipp für mich?  

Vielleicht solltest Du die Def. des Oberflächenintegrals heranziehen .....

FRED


Bezug
                                
Bezug
Transformationsformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:56 Mo 01.09.2014
Autor: Orchis

Zunächst ist ja [mm] {\partial B(x,r)} [/mm] eine Untermannigfaltigkeit des [mm] R^n. [/mm] Eine Parametrisierung ist gegeben durch

           [mm] \varphi: {\partial B(0,1)} \rightarrow {\partial B(x,r)} [/mm]
           z [mm] \mapsto [/mm] x + rz für festes r>0.

Es gilt nun die Integrationsformel für Mannigfaltigkeiten:

[mm] \displaystyle \int\limits_{\partial B(x,r)} [/mm] u(y) [mm] \, \mathrm{d}S(y) [/mm] = [mm] \displaystyle \int\limits_{\partial B(0,1)} u(\varphi(z)) \cdot \sqrt{g^{\varphi}(z)} \, \mathrm{d}S(z) [/mm]

Die Jakobi-Matrix ist gegeben durch

[mm] J_{\varphi}(z)=\begin{bmatrix} r & & 0 \\& ... & & \\0 & & r \end{bmatrix} [/mm] und damit die Gramsche Determinante durch [mm] g^{\varphi}(z) [/mm] = [mm] det(J_{\varphi}(z)^{T} \cdot J_{\varphi}(z)) [/mm]
= [mm] r^{2n} [/mm]

Eingesetzt in die Formel:

[mm] \displaystyle \int\limits_{\partial B(x,r)} [/mm] u(y) [mm] \, \mathrm{d}S(y) [/mm] = [mm] \displaystyle \int\limits_{\partial B(0,1)} [/mm] u(x + rz) [mm] \cdot r^n \, \mathrm{d}S(z). [/mm]

Erneut bleibt genau ein "r" zu viel stehen. Weiß jemand Rat?

Vielen Dank schon mal!

Bezug
                                        
Bezug
Transformationsformel: Antwort
Status: (Antwort) fertig Status 
Datum: 18:04 Mo 01.09.2014
Autor: Leopold_Gast

Der Rand der Kugel hat eine Dimension weniger als der umgebende Raum. Die Parameterdarstellung hängt daher nur von [mm]n-1[/mm] Variablen ab. Daher ist die Gramsche Matrix [mm](n-1)[/mm]-reihig.

Bezug
                                                
Bezug
Transformationsformel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:19 Mo 01.09.2014
Autor: Orchis

Super, stimmt ja! Danke für die Erklärung!

Bezug
                                                
Bezug
Transformationsformel: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:40 Mo 01.09.2014
Autor: Orchis

Entschuldige, aber ich muss da nochmal kurz fragen: Welche n-1 Variablen sind denn jetzt genau relevant? Der Gedanke hinter der Parametrisierung ist ja nun, dass man ein Translation um x [mm] \in R^n [/mm] vornimmt und die Einheitskugel um diesen Punkt dann um Radius r>0 "aufbläht". Dabei sind ja sowohl x, als auch z Punkte im [mm] R^n. [/mm] Wenn [mm] \varphi: {\partial B(0,1)}\mapsto {\partial B(x,r)} [/mm] mit z [mm] \rightarrow [/mm] x + rz also die Parametrisierung der Sphäre sein soll, dann hat der Vektor x + rz doch genau n Spalten...es kommt daher doch auch eine n-dimensionale Gramsche Matrix raus...

Bezug
                                                        
Bezug
Transformationsformel: Antwort
Status: (Antwort) fertig Status 
Datum: 21:32 Mo 01.09.2014
Autor: Leopold_Gast

Ich schreibe [mm]t = (t_1,t_2,\ldots,t_{n-1}) \in \mathbb{R}^{n-1}[/mm]. Ferner seien [mm]x,y,z \in \mathbb{R}^n[/mm] und [mm]r \in \mathbb{R}[/mm] mit [mm]r>0[/mm]. Wenn nun

[mm]z = \varphi(t) \, , \ t \in A[/mm]

eine Parametrisierung des Randes der Einheitskugel ist, dann ist

[mm]y = \psi(t) = x + r \cdot \varphi(t) \, , \ t \in A[/mm]

eine Parametrisierung des Randes der Kugel mit Mittelpunkt [mm]x[/mm] und Radius [mm]r[/mm]. Die Parametrisierungen [mm]\varphi, \psi[/mm] bestehen aus [mm]n[/mm] Komponentenfunktionen, folglich auch ihre Ableitungen nach einer der Variablen [mm]t_j[/mm]. Offenbar gilt:

[mm]\frac{\partial \psi}{\partial t_j} = r \cdot \frac{\partial \varphi}{\partial t_j} \, , \ 1 \leq j \leq n-1 \ \text{(!!!)}[/mm]

Die Gramschen Matrizen von [mm]\varphi[/mm] und [mm]\psi[/mm] sind [mm]G = \left( g_{ij} \right)[/mm] und [mm]H = \left( h_{ij} \right)[/mm] mit [mm]1 \leq i,j \leq n-1 \ \text{(!!!)}[/mm] und

[mm]g_{ij} = \left \langle \frac{\partial \varphi}{\partial t_i} \, , \, \frac{\partial \varphi}{\partial t_j} \right \rangle \, , \ \ h_{ij} = \left \langle \frac{\partial \psi}{\partial t_i} \, , \, \frac{\partial \psi}{\partial t_j} \right \rangle = \left \langle r \cdot \frac{\partial \varphi}{\partial t_i} \, , \, r \cdot \frac{\partial \varphi}{\partial t_j} \right \rangle = r^2 \left \langle \frac{\partial \varphi}{\partial t_i} \, , \, \frac{\partial \varphi}{\partial t_j} \right \rangle[/mm]

Somit gilt [mm]H = r^2 G[/mm] und für die Determinanten:

[mm]|H| = r^{2(n-1)} |G|[/mm]

[mm]\sqrt{|H|} = r^{n-1} \sqrt{|G|}[/mm]

Jetzt erklären sich auch die Oberflächenintegrale. Einerseits gilt:

[mm]\int \limits_{\partial B(x,r)} u ~ \mathrm{d}\sigma = \int \limits_A u \left( \psi(t) \right) \cdot \sqrt{|H|} ~ \mathrm{d}t = r^{n-1} \int \limits_A u \left( x + r \cdot \varphi(t) \right) \cdot \sqrt{|G|} ~ \mathrm{d}t[/mm]

Und mit [mm]v(z) = u(x+rz)[/mm] gilt andererseits:

[mm]\int \limits_{\partial B(0,1)} v ~ \mathrm{d}\sigma = \int \limits_A v \left( \varphi(t) \right) \cdot \sqrt{|G|} ~ \mathrm{d}t = \int \limits_A u \left( x + r \cdot \varphi(t) \right) \cdot \sqrt{|G|} ~ \mathrm{d}t[/mm]

Und ein Vergleich zeigt:

[mm]\int \limits_{\partial B(x,r)} u ~ \mathrm{d}\sigma = r^{n-1} \int \limits_{\partial B(0,1)} v ~ \mathrm{d}\sigma[/mm]

Bezug
                                                                
Bezug
Transformationsformel: Danke + Ende
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:34 Di 02.09.2014
Autor: Orchis

Wow,
ich denke nun habe ich es wirklich verstanden! Klasse, dass du dir Zeit genommen hast, da stand ich wieder ziemlich auf dem Schlauch!!! Ich denke ich werde jetzt noch ein paar Integrale zur Übung lösen. :)

Viele Grüße,
Orchis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de