www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Kombinatorik" - Verschachtelte Kombinationen
Verschachtelte Kombinationen < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verschachtelte Kombinationen: Tipp / Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:43 Mo 09.05.2016
Autor: Chrizzldi

Aufgabe 1
Eine Klausur hat $12$ Aufgaben, für jede Aufgabe kann man $5$ Punkte einreichen. Bei der Korrektur werden für jede Aufgabe nur ganze Punkte (also $0,1,2,3,4$ oder $5$) vergeben. Wieviele Möglichkeiten gibt es ... genau 4 Punkte zu erreichen?






Aufgabe 2
... genau 8 Punkte zu erreichen?






Aufgabe 3
genau 56 Punkte zu erreichen?






Aufgabe 4
mindestens 55 Punkte zu erreichen?






Hallo liebes Matheforum,

ich bin noch nicht wirklich fit in Sachen Kombinatorik, freue mich also über Tipp und korrekturen.

zu Aufgabenteil 1:
Die Anzahl der Möglichen Kombinationen 4 Punkte zu erhalten erkläre ich mir erstmal durch das Aufzählen:
4 = 4
3 + 1 = 4
2 + 2 = 4
2 + 1 + 1 = 4
1 + 1 + 1 +1 =4
Wenn ich mir jetzt vorstelle, wieviele mögliche Variationen das auf 12 Aufgaben verteilt ausmacht betrachte ich erstmal einzeln:
(4): 12 Variationen.
(3, 1): $12 [mm] \cdot [/mm] 11 = 132$ Variationen.
(2, 2): [mm] $\frac{12\cdot 11}{2} [/mm] = 66$ Variationen (weil doppelte ja nicht zählen)
(2, 1, 1): $12 [mm] \cdot \frac{11\cdot 10}{2} [/mm] = 660$ Variationen.
(1, 1, 1, 1): [mm] $\frac{12 \cdot 11 \cdot 10 \cdot 9}{2} [/mm] = 5940$ Variationen.
Stimmt das?

zu Aufgabenteil 2:
Wenn meine Vermutung aus Aufgabenteil 1 stimmt, dann könnte ich das Prinzip so weiter stricken, nur leider darf eine Aufgabe ja maximal 5 Punkte geben. Kann ich also die Möglichkeiten 5 Punkte zu bekommen wie aus Teil 1 berechnen, dann selbiges für den Rest (hier also 3) und dann überlegen wie die Verteilung für den Rest (3) noch auf die Aufgaben aus den Möglichkeiten der 5 Punkte verteilt werden kann ohne bei einer Aufgabe mehr also 5 Punkte zu erhalten. Mir ist leider im Moment noch schleierhaft wie das funktionieren soll.

zu Aufgabenteil 3:
Selbes Prinzip/Problem wie Teil 2.

zu Aufgabenteil 4:
die Möglichkeiten 55 Punkte, 56 Punkte, 57 Punkte ... 60 Punkte zu erreichen addiert. Wobei wir wieder bei der Problematik von Aufgabenteil 2 und 3 wären.

Tausend Dank für eure Hilfe!

        
Bezug
Verschachtelte Kombinationen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:45 Di 10.05.2016
Autor: luis52


> zu Aufgabenteil 1:
>  Die Anzahl der Möglichen Kombinationen 4 Punkte zu
> erhalten erkläre ich mir erstmal durch das Aufzählen:
>  4 = 4
>  3 + 1 = 4
>  2 + 2 = 4
>  2 + 1 + 1 = 4
>  1 + 1 + 1 +1 =4
>  Wenn ich mir jetzt vorstelle, wieviele mögliche
> Variationen das auf 12 Aufgaben verteilt ausmacht betrachte
> ich erstmal einzeln:
>  (4): 12 Variationen.
>  (3, 1): [mm]12 \cdot 11 = 132[/mm] Variationen.
>  (2, 2): [mm]\frac{12\cdot 11}{2} = 66[/mm] Variationen (weil
> doppelte ja nicht zählen)
>  (2, 1, 1): [mm]12 \cdot \frac{11\cdot 10}{2} = 660[/mm]
> Variationen.
>  (1, 1, 1, 1): [mm]\frac{12 \cdot 11 \cdot 10 \cdot 9}{2} = 5940[/mm]
> Variationen.
>  Stimmt das?

Fuer $(1,1,1,1)$ zaehle *ich* [mm] $\binom{12}{4}=495$ [/mm] Moeglichkeiten. Sonst kann ich keinen Fehler entdecken.

>  
> zu Aufgabenteil 2:
>  Wenn meine Vermutung aus Aufgabenteil 1 stimmt, dann
> könnte ich das Prinzip so weiter stricken, nur leider darf
> eine Aufgabe ja maximal 5 Punkte geben. Kann ich also die
> Möglichkeiten 5 Punkte zu bekommen wie aus Teil 1
> berechnen, dann selbiges für den Rest (hier also 3) und
> dann überlegen wie die Verteilung für den Rest (3) noch
> auf die Aufgaben aus den Möglichkeiten der 5 Punkte
> verteilt werden kann ohne bei einer Aufgabe mehr also 5
> Punkte zu erhalten.  

Das hoert sich gut an.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Kombinatorik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 23m 14. matux MR Agent
LinAMoVR/Diagonalmatrix
Status vor 7h 13m 2. fred97
DiffGlGew/Existenz des Polynoms
Status vor 8h 48m 4. meili
UAnaR1/Reaktion - erwünscht
Status vor 14h 0m 27. meili
SAnaSonst/Zylinder aus O und V
Status vor 1d 2h 0m 2. fred97
FunkAna/Trennungssatz von Hahn-Banach
^ Seitenanfang ^
www.vorhilfe.de