www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Proofs by induction" - Vollständige Induktion
Vollständige Induktion < Proofs by induction < Real Analysis (Single Variable) < Real Analysis < Uni-Calculus < University < Maths <
View: [ threaded ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ all forums  | ^ Tree of Forums  | materials

Vollständige Induktion: Frage (beantwortet)
Status: (Question) answered Status 
Date: 23:04 Fr 10/11/2017
Author: Flowbro

Aufgabe
a
Sei m ∈N beliebig. Finden Sie eine geschlossen Darstellung für [mm] \summe_{j=1}^{n} [/mm] j(j + 1)(j + 2)...(j + m−1). Beweisen Sie Ihre Vermutung!
b
Sei (K,+,·,<) ein geordneter Körper. Für x,y ∈K gilt 4xy ≤ (x + [mm] y)^2 [/mm]

brauch noch hilfe bei rest von meinen aufgaben
bei a find ich irgendwie einfach keine darstellung (wenn man die hat kann man die ja mit v. induktion beweisen) und bei b hab ich den induktionanfang, weiß aber nich wie es weiter geht da  man ja eigentlich dann n+1 einsetzt was aber nich da ist

        
Bezug
Vollständige Induktion: Antwort
Status: (Answer) finished Status 
Date: 07:00 Sa 11/11/2017
Author: angela.h.b.


> a
>  Sei m ∈N beliebig. Finden Sie eine geschlossen
> Darstellung für [mm]\summe_{j=1}^{n}[/mm] j(j + 1)(j + 2)...(j +
> m−1). Beweisen Sie Ihre Vermutung!
>  b
>  Sei (K,+,·,<) ein geordneter Körper. Für x,y ∈K gilt
> 4xy ≤ (x + [mm]y)^2[/mm]
>  brauch noch hilfe bei rest von meinen aufgaben
>  bei a find ich irgendwie einfach keine darstellung (wenn
> man die hat kann man die ja mit v. induktion beweisen) und
> bei b hab ich den induktionanfang, weiß aber nich wie es
> weiter geht da  man ja eigentlich dann n+1 einsetzt was
> aber nich da ist

Hallo,

poste in Zukunft Aufgaben, die nicht zusammengehören, lieber  in verschiedene Threads.

a.
[mm] \summe_{j=1}^{n} [/mm] j(j + 1)(j + 2)...(j + [mm] m−1)=\bruch{(m+n)!}{(m+1)(n-1)!} [/mm]

b.
Das ist nichts für Induktion.

Rechne vor, daß für alle x,y gilt [mm] (x+y)^2-4xy\ge [/mm] 0.

LG Angela



Bezug
                
Bezug
Vollständige Induktion: Frage (beantwortet)
Status: (Question) answered Status 
Date: 22:48 Sa 11/11/2017
Author: Tobikall

oh ja die b geht ja super easy dann mit termumformungen :).
könntest du mir noch bei der a etwas erläutern wie du auf das ergebnis kommst und wie genau dabei der beweisansatz lautet, das wäre sehr nett :)))

Bezug
                        
Bezug
Vollständige Induktion: Antwort
Status: (Answer) finished Status 
Date: 07:21 So 12/11/2017
Author: angela.h.b.


>  könntest du mir noch bei der a etwas erläutern wie du
> auf das ergebnis kommst

Eingebung. Vom Engel geflüstert. Zur Sicherheit nochmal meinen Kater gefragt -
es ist völlig egal! Entscheidend ist, daß man seine Vermutung beweist.

[Naja, auch wenn es mich in einem schlechten Licht dastehen läßt:
ich habe ein Mathematikprogramm für mich arbeiten lassen...]

> und wie genau dabei der
> beweisansatz lautet, das wäre sehr nett :)))

Sei [mm] m\in \IN [/mm] beliebig.

Behauptung:
für alle [mm] n\in \IN [/mm] gilt
[mm] \summe_{j=1}^nj*(j+1)(j+2)*...*(j+m-1)=\bruch{(m+n)!}{(m+1)(n-1)!} [/mm]

Induktionsanfang:
für n=1 hat man
[mm] \summe_{j=1}^1j*(j+1)(j+2)*...*(j+m-1)=1*2*3*...*m=m! [/mm]
und
[mm] \bruch{(m+1)!}{(m+1)(1-1)!}=... [/mm]
Die Behauptung stimmt also für n=1.

Induktionsvoraussetzung:
für ein [mm] n\in \IN [/mm] ist
[mm] \summe_{j=1}^nj*(j+1)(j+2)*...*(j+m-1)=\bruch{(m+n)!}{(m+1)(n-1)!} [/mm]


Induktionsschluß:
hier ist nun vorzurechnen, daß die Behauptung unter der gemacten Voraussetzung auch für die nächste natürliche Zahl, also für n+1, gilt,
daß also
[mm] \summe_{j=1}^{n+1}j*(j+1)(j+2)*...*(j+m-1)=\bruch{(m+n+1)!}{(m+1)(n!} [/mm] .

[mm] \summe_{j=1}^{n+1}j*(j+1)(j+2)*...*(j+m-1) [/mm]
[mm] =(\summe_{j=1}^n...)+... [/mm]
=... ... ... ... ...
[mm] =\bruch{(m+n+1)!}{(m+1)(n!} [/mm]

LG Angela











Bezug
View: [ threaded ] | ^ Forum "Uni-Analysis-Induktion"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 1h 0m 4. Diophant
UStoc/Geordnete Stichproben mit Wdh.
Status vor 1h 22m 60. Diophant
MSons/Kann man beim Roulette verlier
Status vor 1h 27m 7. matux MR Agent
Algebra/Integritätsbereich Polynomring
Status vor 4h 27m 3. matux MR Agent
Logik/Reduktion
Status vor 7h 12m 4. fred97
ULinAAb/Permutationsgr./ Transposition
^ Seitenanfang ^
www.vorhilfe.de