www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Sonstiges" - Was heisst "exp" in Wolfram?
Was heisst "exp" in Wolfram? < Sonstiges < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Was heisst "exp" in Wolfram?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:10 Mo 18.08.2014
Autor: gr5959

In der vierten Zeile der folgenden Lösungsschritte bei WolframAlpha
[a][Bild Nr. 1 (fehlt/gelöscht)]
erscheint die Abkürzung "exp". Obwohl ich der Lösung im ganzen folgen kann, ist mir nicht recht klar, wie die Abkürzung zu verstehen ist. G.R.

        
Bezug
Was heisst "exp" in Wolfram?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:18 Mo 18.08.2014
Autor: lupi5

Bei der exp()-Funktion handelt es sich um die Exponentialfunktion zur Basis e = 2,718281828... (der eulerschen Zahl).

Also exp(x) = [mm] e^x. [/mm]

Bezug
        
Bezug
Was heisst "exp" in Wolfram?: Antwort
Status: (Antwort) fertig Status 
Datum: 20:24 Mo 18.08.2014
Autor: Diophant

Hallo,

kleiner Zusatz: dass wolframalpha/Mathematica (und andere CAS-Systeme natürlich auch) die Exponentialfunktion so schreiben, also

[mm] exp(x):=e^x [/mm]

hat den einfachen Grund, dass diese Schreibweise in der akademischen Literatur weit verbreitet ist, insbesondere im angloamerikanischen Raum.


Gruß, Diophant

Bezug
                
Bezug
Was heisst "exp" in Wolfram?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:01 Mo 18.08.2014
Autor: Event_Horizon

Nunja, es hat noch nen weiteren Grund. (Oder eher Vorteil)

Die e-Funktion kommt sehr sehr häufig vor, und der Exponent ist gerne auch mal länglich.  Grade die Quantenphysik spielt sich zu sehr großen Teilen im Exponenten ab, und manchmal nimmt man das Blatt am besten quer.

Dann ist die exp-schreibweise ganz praktisch, weil man den Exponenten dann "normal" schreiben kann.

Bezug
                
Bezug
Was heisst "exp" in Wolfram?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:20 Mo 18.08.2014
Autor: DieAcht

Vielleicht irre ich mich gewaltig, aber bei uns wurde in
Analysis I zunächst die Exponentialfunktion eingeführt und
erst kurz spätet wurde dann der folgende Satz bewiesen:

      [mm] \exp(x)=e^x [/mm] für alle [mm] x\in\IR. [/mm]

Folglich wurde

      [mm] e^x:=\exp(x) [/mm] für alle [mm] x\in\IR [/mm]

festgelegt.


Gruß
DieAcht

Bezug
                        
Bezug
Was heisst "exp" in Wolfram?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:49 Mo 18.08.2014
Autor: Marcel

Hallo,

> Vielleicht irre ich mich gewaltig, aber bei uns wurde in
>  Analysis I zunächst die Exponentialfunktion eingeführt
> und
>  erst kurz spätet wurde dann der folgende Satz bewiesen:
>  
> [mm]\exp(x)=e^x[/mm] für alle [mm]x\in\IR.[/mm]

nein, Du irrst Dich nicht. Man kann

    [mm] $\exp(x):=\sum_{k=0}^\infty x^k/(k!)$ [/mm]

sogar für $x [mm] \in \IC$ [/mm] DEFINIEREN. Denn diese Reihe konvergiert absolut für alle
$x [mm] \in \IC\,.$ [/mm]

Dann kann man

    [mm] $\exp(1)=\lim_{n \to \infty} (1+\tfrac{1}{n})^n$ [/mm]

nachweisen - es ist also egal, ob man [mm] $e:=\lim_{n \to \infty} (1+\tfrac{1}{n})^n$ [/mm] setzt,
oder erst [mm] $e:=\exp(1)$ [/mm] und dann diese Gleichheit nachweist. Jedenfalls
sollte [mm] $e\,$ [/mm] mal definiert worden sein, und eine zweite Darstellung erhält
man dann mithilfe dieser Gleichung.

(Allgemeiner kann man

    [mm] $\exp(z)=\lim_{n \to \infty} (1+\tfrac{z}{n})^n$ [/mm]

beweisen (dabei $z [mm] \in \IC$).) [/mm]

Nun ist [mm] $e\,=\exp(1)=\lim_{n \to \infty} (1+\tfrac{1}{n})^n$ [/mm] eine positive Zahl. Die Exponentialfunktion

    [mm] $\IC \ni [/mm] z [mm] \mapsto \exp(z) \in \IC\,$ [/mm]

hat wunderbare Eigenschaften:
So ist (wegen [mm] $\exp(w+z)=\exp(w)*\exp(z)$ [/mm] - das kann man mit dem Cauchyprodukt
nachrechnen!)

    [mm] $\exp(n)=\exp(\sum_{k=1}^n 1)=\produkt_{k=1}^n \exp(1)=e^n$ [/mm]

für natürliches $n [mm] \in \IN$ [/mm] und es ist

    [mm] $\exp(-n)=(\exp(n))^{-1}$ [/mm]

wegen [mm] $\exp(-n+n)=\exp(0)=1\,.$ [/mm] Also auch

    [mm] $e^{-n}=\exp(-n)\,.$ [/mm]
  
Damit sollte man

    [mm] $\exp(q)=e^{q}$ [/mm] für $q [mm] \in \IQ$ [/mm]

nachweisen können.
Daher ist es naheliegend

    [mm] $e^r:=\exp(r)$ [/mm]

für $r [mm] \in \IR$ [/mm] zu definieren, bzw. noch allgemeiner

    [mm] $e^{z}:=\exp(z)$ [/mm] für $z [mm] \in \IC\,.$ [/mm]
(Wie schön das ist wird man spätestens bei der Behandlung der
Potenzreihentheorie sehen!)

Man beachte oben: [mm] $e^q$ [/mm] für $q [mm] \in \IQ$ [/mm] ist unabhängig von der Darstellung des
Bruches $q [mm] \in \IQ\,.$ [/mm] Ist etwa $q=m/n$ mit $m [mm] \in \IZ$ [/mm] und $n [mm] \in \IZ \setminus \{0\}\,,$ [/mm] so ist

    [mm] $e^q:=(\sqrt[|n|]{e^{|m|}})^{\text{sign}(q)}\,.$ [/mm]

Und die [mm] $|n|\,$-ten [/mm] Wurzeln ($n [mm] \in \IZ$) [/mm] aus nichtnegativen Zahlen kann man auch ohne
[mm] $\exp(\cdot)$ [/mm] definieren.

P.S. Das heißt aber nicht, dass es keine andere Möglichkeiten zur Definition
von [mm] $e^z$ [/mm] gäbe. Im Endeffekt wird den Computer/den Programmierer hier aber
eh nur interessieren, wie man [mm] $e^z$ [/mm] möglichst effizient (auf möglichst viele
Nachkommastellen genau) berechnet. Was die Theorie dahinter angeht
(was [mm] $e^r$ [/mm] für $r [mm] \in \IR$ [/mm] oder gar [mm] $e^z$ [/mm] für $z [mm] \in \IC$ [/mm] *wirklich* ist bzw. sein
soll), ist vermutlich eher nebensächlich.

Gruß,
  Marcel

Bezug
                                
Bezug
Was heisst "exp" in Wolfram?: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:48 Di 19.08.2014
Autor: gr5959

Dank an alle für alle Antworten! G.R.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de