www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Wenn in 0 steig, ganz stetig
Wenn in 0 steig, ganz stetig < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wenn in 0 steig, ganz stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:02 Mi 17.12.2014
Autor: duduknow

Aufgabe
Gegeben sei Funktion [mm] $f:\mathbb{R} \rightarrow \mathbb{R}$ [/mm] mit der Eigenschaft $f(x + y) = f(x) + f(y)$ und $f$ stetig in $0$. Zeigen Sie: $f$ ist stetig auf [mm] $\mathbb{R}$. [/mm]

Hallo,

meine Idee zu dieser Aufgabe ist folgende:

Ich weiß, dass $f$ stetig ist in $0$, also [mm] $\lim_{x \rightarrow 0} [/mm] f(x) = f(0) = 0$ (denn $f(x) = f(x + 0) = f(x) + f(0) [mm] \Rightarrow [/mm] f(0) = 0$).

Wenn jetzt [mm] $x_0 \ne [/mm] 0$ ist, muss ich zeigen, dass [mm] $\lim_{x \rightarrow x_0} [/mm] f(x) = [mm] f(x_0)$ [/mm] ist:
[mm] $\lim_{x \rightarrow x_0} [/mm] f(x) = [mm] \lim_{x' \rightarrow \infty} f(x_0 \pm \frac{1}{x'}) [/mm] = [mm] \lim (f(x_0) \pm f(\frac{1}{x})) [/mm] = [mm] f(x_0)$, [/mm] indem ich $x' = [mm] \frac{1}{x - x_0}$ [/mm] substituiere.
Und daraus folgt die Behauptung, dass $f$ auf ganz [mm] $\mathbb{R}$ [/mm] stetig ist.

Ist das richtig argumentiert oder darf ich diese Substitution nicht machen?

Danke für eine Antwort und mit freundlichen Grüßen

        
Bezug
Wenn in 0 steig, ganz stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 20:54 Mi 17.12.2014
Autor: Marcel

Hallo,

> Gegeben sei Funktion [mm]f:\mathbb{R} \rightarrow \mathbb{R}[/mm]
> mit der Eigenschaft [mm]f(x + y) = f(x) + f(y)[/mm] und [mm]f[/mm] stetig in
> [mm]0[/mm]. Zeigen Sie: [mm]f[/mm] ist stetig auf [mm]\mathbb{R}[/mm].
>  Hallo,
>  
> meine Idee zu dieser Aufgabe ist folgende:
>
> Ich weiß, dass [mm]f[/mm] stetig ist in [mm]0[/mm], also [mm]\lim_{x \rightarrow 0} f(x) = f(0) = 0[/mm]
> (denn [mm]f(x) = f(x + 0) = f(x) + f(0) \Rightarrow f(0) = 0[/mm]).

das ist okay, aber Du kannst es Dir auch etwas einfacher machen, und das
[mm] $x\,$ [/mm] konkretisieren. Ob Du nun

    $f(0)=f(0+0)=f(0)+f(0)$

oder

    $f(1)=f(1+0)=f(1)+f(0)$

schreibst, um [mm] $f(0)=0\,$ [/mm] zu erhalten (oder allgemein mit x), ist ja egal.

> Wenn jetzt [mm]x_0 \ne 0[/mm] ist, muss ich zeigen, dass [mm]\lim_{x \rightarrow x_0} f(x) = f(x_0)[/mm]
> ist:
> [mm]\lim_{x \rightarrow x_0} f(x) = \lim_{x' \rightarrow \infty} f(x_0 \pm \frac{1}{x'}) = \lim (f(x_0) \pm f(\frac{1}{x})) = f(x_0)[/mm],
> indem ich [mm]x' = \frac{1}{x - x_0}[/mm] substituiere.

Das ist ein bisschen komisch aufgeschrieben, aber die Idee ist in Ordnung.
An der Stelle

    [mm] $\lim (f(x_0) \pm f(\frac{1}{x}))$ [/mm]

fehlt aber etwas: Da soll ja $x' [mm] \to \infty$ [/mm] laufen gelassen werden, und dann
gehört da auch [mm] $f(1/x\red{\,'\,})$ [/mm] hin!

Das Ganze ist deswegen etwas *unglücklich*, weil Du bei der Substitution
[mm] $x'=1/(x-x_0)$ [/mm] danach quasi davon ausgehst, dass $x [mm] \to x_0$ [/mm] gleichbedeutend
mit $x' [mm] \to \infty$ [/mm] oder $x' [mm] \to -\infty$ [/mm] ist. Was machst Du aber, wenn ich mich
etwa mit [mm] $x_n=x_0+(-1)^n*1/n$ [/mm] an [mm] $x_0$ [/mm] annähere? Das kann man beheben,
aber dann muss man formal ein wenig aufpassen.

> Und daraus folgt die Behauptung, dass [mm]f[/mm] auf ganz [mm]\mathbb{R}[/mm]
> stetig ist.
>
> Ist das richtig argumentiert oder darf ich diese
> Substitution nicht machen?

S.o., man kann sowas ähnlich aufschreiben, müßte dann aber $|x'| [mm] \to \infty$ [/mm] laufen
lassen und und und.

Ich frage mich aber, ehrlich gesagt, warum Du es Dir so schwer machst?
Du brauchst die Substitution doch eigentlich gar nicht:
Sei [mm] $x_0 \not=0\,.$ [/mm] Dann gilt

    [mm] $\lim_{x \to x_0}f(x)=\lim_{x \to x_0}f(x-x_0+x_0)=\lim_{x \to x_0}\{f(x-x_0)+\underbrace{f(x_0)}_{\text{ unabhg. von }x}\}=f(x_0)+\lim_{x \to x_0}f(x-x_0)\,.$ [/mm]

Sei [mm] $d=d_{x_0}(x):=x-x_0\,$ [/mm] (nicht notwendig $d > 0$!). Dann gilt

    $x [mm] \to x_0$ $\iff$ [/mm] $d [mm] \to [/mm] 0$

und daher

    [mm] $\lim_{x \to x_0}f(x)=f(x_0)+\lim_{d \to 0}f(d)\,.$ [/mm]

Den Rest bekommst Du hin!

Nur nochmal als Hinweis: Bei $d [mm] \to [/mm] 0$ darf das Vorzeichen von [mm] $d\,$ [/mm] beim "Nullzulauf"
variieren, wie es will, das interessiert keinen. Leider liefert $0 [mm] \not=d \to [/mm] 0$ weder

    $1/d [mm] \to \infty$ [/mm] noch $1/d [mm] \to -\infty\,,$ [/mm]

sondern nur $|1/d| [mm] \to \infty$. [/mm]

Modifiziert man Deine Variante etwas, so kann man mit ihr die Rechtsstetigkeit
in [mm] $x_0$ [/mm] und auch die Linksstetigkeit in [mm] $x_0$ [/mm] zeigen. Packt man das zusammen,
so hat man damit dann auch die Stetigkeit gezeigt. Aber in Deinem Aufschrieb
oben gibt's halt - wenn man es genau liest - ein paar Stellen, die man so
nicht schreiben kann!

P.S. Es gibt übrigens noch eine Alternative:

    [mm] $|f(x_0)-\lim_{x \to x_0}f(x)|=|f(x_0)-\lim_{h \to 0} f(x_0+h)|=...=|\lim_{h \to 0}f(h)|$ [/mm]

Beachte übrigens: Bei [mm] $\lim_{h \to 0}...$ [/mm] ist immer $0 [mm] \not=h$ [/mm] gemeint!

Gruß,
  Marcel

Bezug
                
Bezug
Wenn in 0 steig, ganz stetig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:10 Mi 17.12.2014
Autor: duduknow

Hi,

vielen Dank für deine Antwort. Das hat mir sehr geholfen.

Bezug
                        
Bezug
Wenn in 0 steig, ganz stetig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:45 Do 18.12.2014
Autor: Marcel

Hi,

> Hi,
>  
> vielen Dank für deine Antwort. Das hat mir sehr geholfen.  

gerne. :-)

Gruß,
  Marcel

Bezug
        
Bezug
Wenn in 0 steig, ganz stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 09:40 Do 18.12.2014
Autor: fred97

Hallo duduknow,

do you know

Satz: Die Funktion $ [mm] f:\mathbb{R} \rightarrow \mathbb{R} [/mm] $ habe die Eigenschaft $ f(x + y) = f(x) + f(y) $ für alle $x,y [mm] \in \IR$. [/mm]
Dann sind die folgenden Aussagen äquivalent:

(1) f ist in 0 stetig;

(2) f ist auf [mm] \IR [/mm] stetig;

(3) $f(x)=f(1)*x$   für alle [mm] $x\in \IR$. [/mm]

Beweis: (1) [mm] \Rightarrow [/mm] (2) ist erledigt. (3) [mm] \Rightarrow [/mm] (1) ist klar.

Den Beweis für  (2) [mm] \Rightarrow [/mm] (3) versuche mal selbst.

FRED

Bezug
                
Bezug
Wenn in 0 steig, ganz stetig: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 05:27 So 21.12.2014
Autor: duduknow

Hallo fred97,

ich habe deine leider Antwort erst jetzt gesehen. :( Danke dafür!

Eine aktuelle Übungsaufgabe ist es, zu zeigen, dass stetige Funktionen, die auf [mm] $\mathbb{Q}$ [/mm] übereinstimmen, auch auf [mm] $\mathbb{R}$ [/mm] übereinstimmen. Daraus folgt (2) => (3) nach:

Das stimmt für alle $x [mm] \in \mathbb{Q}$, [/mm] denn:

1) $0 = f(1 - 1) = f(1) + f(-1) [mm] \Leftrightarrow [/mm] f(-1) = -f(1)$

2) $f(x) = [mm] f(\frac{q}{q}\cdot [/mm] 1) = [mm] q\cdot f(\frac{1}{q}\cdot [/mm] 1) [mm] \Leftrightarrow \frac{1}{q} \cdot [/mm] f(1) = [mm] f(\frac{1}{q}\cdot [/mm] 1)$ [mm] $\forall [/mm] q [mm] \in \mathbb{N}$ [/mm]

3) [mm] $f(p\cdot [/mm] 1) = [mm] p\cdot [/mm] f(1)$ [mm] $\forall [/mm] p [mm] \in \mathbb{N}$, [/mm] und mit 1) sowie $f(0) = 0$ also auch für alle $p [mm] \in \mathbb{Z}$ [/mm]

Also gilt die Aussage für alle [mm] $\frac{p}{q} [/mm] = x [mm] \in \mathbb{Q}$. [/mm]


(2) => (3) folgt nun mit der Übungsaufgabe:

Sei also [mm] $x_0 \in \mathbb{R} \setminus \mathbb{Q}$ [/mm] und [mm] $x_k \in \mathbb{Q}$ [/mm] eine Folge mit [mm] $x_k \rightarrow x_0$. [/mm]

Dann gilt [mm] $f(x_k) [/mm] = [mm] f(1)\cdot x_k$ $\forall [/mm] k$, und weil $f$ stetig muss [mm] $\lim_{k \rightarrow \infty} f(x_k) [/mm] = [mm] f(x_0)$. [/mm] Da der Grenzwert eindeutig ist muss [mm] $f(x_0) [/mm] = [mm] f(1)\cdot x_0$. [/mm]

Stimmt das so?

Bezug
                        
Bezug
Wenn in 0 steig, ganz stetig: Antwort
Status: (Antwort) fertig Status 
Datum: 09:31 So 21.12.2014
Autor: fred97


> Hallo fred97,
>  
> ich habe deine leider Antwort erst jetzt gesehen. :( Danke
> dafür!
>  
> Eine aktuelle Übungsaufgabe ist es, zu zeigen, dass
> stetige Funktionen, die auf [mm]\mathbb{Q}[/mm] übereinstimmen,
> auch auf [mm]\mathbb{R}[/mm] übereinstimmen. Daraus folgt (2) =>
> (3) nach:
>  
> Das stimmt für alle [mm]x \in \mathbb{Q}[/mm], denn:
>  
> 1) [mm]0 = f(1 - 1) = f(1) + f(-1) \Leftrightarrow f(-1) = -f(1)[/mm]
>  
> 2) [mm]f(x) = f(\frac{q}{q}\cdot 1) = q\cdot f(\frac{1}{q}\cdot 1) \Leftrightarrow \frac{1}{q} \cdot f(1) = f(\frac{1}{q}\cdot 1)[/mm]
> [mm]\forall q \in \mathbb{N}[/mm]



Ganz links sollte f(1) stehen.


>  
> 3) [mm]f(p\cdot 1) = p\cdot f(1)[/mm] [mm]\forall p \in \mathbb{N}[/mm], und
> mit 1) sowie [mm]f(0) = 0[/mm] also auch für alle [mm]p \in \mathbb{Z}[/mm]
>  
> Also gilt die Aussage für alle [mm]\frac{p}{q} = x \in \mathbb{Q}[/mm].
>  
>
> (2) => (3) folgt nun mit der Übungsaufgabe:
>  
> Sei also [mm]x_0 \in \mathbb{R} \setminus \mathbb{Q}[/mm] und [mm]x_k \in \mathbb{Q}[/mm]
> eine Folge mit [mm]x_k \rightarrow x_0[/mm].
>
> Dann gilt [mm]f(x_k) = f(1)\cdot x_k[/mm] [mm]\forall k[/mm], und weil [mm]f[/mm]
> stetig muss [mm]\lim_{k \rightarrow \infty} f(x_k) = f(x_0)[/mm]. Da
> der Grenzwert eindeutig ist muss [mm]f(x_0) = f(1)\cdot x_0[/mm].
>
> Stimmt das so?  

Ja

FRED


Bezug
                                
Bezug
Wenn in 0 steig, ganz stetig: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:54 So 21.12.2014
Autor: duduknow

Danke für die Korrektur.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de