www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Ordinary Differential Equations" - inhomogene DGL erster Ordnung
inhomogene DGL erster Ordnung < Ordinary Differential Equations < Differential Equations < Uni-Calculus < University < Maths <
View: [ threaded ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ all forums  | ^ Tree of Forums  | materials

inhomogene DGL erster Ordnung: Tipp/Idee
Status: (Frage) überfällig Status 
Date: 18:12 Mi 08/11/2017
Author: Thomas0086

Aufgabe
Finde möglichst alle Lösungen der folgenden linearen inhomogenen Differentialgleichungen erster Ordnung in x. Löse dazu zuerst die entsprechenden homogenen Differentialgleichungen  und  variiere  anschließend die Konstanten.  

b) [mm] y'(x)= \lambda y(x) + \bruch{\lambda^{n+1} x^{n}}{n!} [/mm]

mit n [mm] \in \IN [/mm] und [mm] \lambda \in \IR [/mm]

Hallo zusammen,

ich habe auf den ersten Seiten und per Suchfunktion keinen Thread gefunden, der diese Aufgabe behandelt. Daher hier meine Frage:


Aufgabe 1

[mm] y'(x)= \lambda y(x) + \bruch{\lambda^{n+1} x^{n}}{n!} [/mm]

Für den homogenen Teil komme ich auf folgende Gleichung [mm] y= e^{\lambda x} [/mm] c mit c [mm] \in \IR [/mm]

Für c'(x) folgt daraus:

[mm]c'(x)= e^{-\lambda x} \bruch{\lambda^{n} x^{n}}{n!} [/mm]

Das Integral über die rechte Seite bereitet mir Schwierigkeiten.

Ich habe versucht [mm] t=\lambda x [/mm] zu substituieren:

[mm]\integral_{}^{}{e^{-t} t^{n}dt} [/mm], komme damit aber nicht so richtig weiter, da ich n-mal integrieren müsste.

Alternativ sieht [mm]\bruch{x^{n}}{n!} [/mm] stark nach der Exponentialreihe aus, wüsste ab hier aber auch nicht weiter.



Über eine Tipp oder neuen Anstoß würde ich mich sehr freuen.

Liebe Grüße
Thomas


        
Bezug
inhomogene DGL erster Ordnung: Mitteilung
Status: (Statement) No reaction required Status 
Date: 18:54 Mi 08/11/2017
Author: Martinius

Hallo Thomas0086,

hast Du schon bei Wolfram alpha geguckt?

[]Wolfram


LG, Martinius

Bezug
                
Bezug
inhomogene DGL erster Ordnung: Frage (beantwortet)
Status: (Question) answered Status 
Date: 22:26 Mi 08/11/2017
Author: Thomas0086

Hallo Martinius,

Danke für deine Antwort. Auf Wolfram bin ich auch schon gestoßen, allerdings verstehe ich den Zusammenhang bzw. den Rechenschritt zur Gamma-Funktion nicht so recht, da mit diese bisher unbekannt ist/war.

Von
[mm] c'(x)= e^{-\lambda x} \bruch{\lambda^{n} x^{n}}{n!} [/mm] ausgehend:
Die Substitution
[mm] t=\lambda x [/mm] führt zu [mm] dx = dt/\lambda [/mm] und damit zu

[mm] \bruch{1}{n!\lambda} \integral_{}^{}{e^{-t} t^n dt} [/mm]

Über die partielle Integration komme ich auf:

[mm] \bruch{1}{n!\lambda}[-e^{t}t^{n} + n\integral_{}^{}{e^{-t} t^{n-1} dt}] [/mm]

Bei Wolfram steht, dass dies die "incomplete gamma function" sei. Laut Definition der Gamma Funktion wäre das Integral, da unbestimmt, allerdings die Gammafunktion.
Oder kommt hier zum tragen, dass [mm] \lambda \not= 0 [/mm] sein muss?

Danke schön.

Thomas

Bezug
                        
Bezug
inhomogene DGL erster Ordnung: Antwort
Status: (Answer) finished Status 
Date: 15:43 Do 09/11/2017
Author: leduart

Hallo
ich würde versuchen noch die 2 nächsten Interaktionen zu machen dann siehst du wie es läuft und hast für n eine endliche Reihe.
Gruß ledum

Bezug
        
Bezug
inhomogene DGL erster Ordnung: Fälligkeit abgelaufen
Status: (Statement) No reaction required Status 
Date: 18:20 So 12/11/2017
Author: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
View: [ threaded ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ all forums  | ^ Tree of Forums  | materials


Alle Foren
Status vor 56m 4. Diophant
UStoc/Geordnete Stichproben mit Wdh.
Status vor 1h 18m 60. Diophant
MSons/Kann man beim Roulette verlier
Status vor 1h 23m 7. matux MR Agent
Algebra/Integritätsbereich Polynomring
Status vor 4h 23m 3. matux MR Agent
Logik/Reduktion
Status vor 7h 08m 4. fred97
ULinAAb/Permutationsgr./ Transposition
^ Seitenanfang ^
www.vorhilfe.de