www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Algebra" - modulare Gleichung
modulare Gleichung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

modulare Gleichung: Primzahl
Status: (Frage) beantwortet Status 
Datum: 15:52 So 31.12.2017
Autor: sancho1980

Hallo

ich versuche folgende Aufgabenstellung zu lösen:

"Zeigen Sie: Wenn p eine Primzahl ist, so hat die Gleichung [mm] x^2=1 [/mm] (mod p) nur die Lösungen x = 1 (mod p) und x = -1 (mod p) (Tipp: [mm] x^2 [/mm] - 1 = (x - 1)(x + 1))".

Ich fange an mit:

[mm] x^2 [/mm] = 1 + kp mit k [mm] \in \IZ [/mm]

Das für mich nach Umformung zu

(x - 1)(x + 1) = kp

Wenn ich jetzt hier für x die Werte 1 oder -1 einsetze, dann lande ich bei

0 = kp

Was auch immer mir das sagen will ...

Ich kann auch umformen zu

[mm] \bruch{x - 1}{k} [/mm] = [mm] \bruch{p}{x + 1} [/mm]

bzw


[mm] \bruch{x + 1}{k} [/mm] = [mm] \bruch{p}{x - 1} [/mm]

Dann wird zumindest mal klar, dass der Nenner auf der rechten Seite nur 1 oder -1 sein kann; schließlich handelt es sich bei p um eine Primzahl. Aber was will mir das sagen? Angenommen ich setze x := 1 in

[mm] \bruch{x - 1}{k} [/mm] = [mm] \bruch{p}{x + 1} [/mm]

Dann erhalte ich letztendlich:

0 = [mm] \bruch{p}{2}. [/mm]

Setze ich x := -1, dann lande ich bei:

[mm] \bruch{-2}{k} [/mm] = [mm] \bruch{p}{0} [/mm]

Wenn ich 1 und -1 ein in die andere Formel einsetze, kommt das Gleiche (nur andersrum) raus. Was will mir das alles sagen?

Gruß und Danke,

Martin

        
Bezug
modulare Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:35 So 31.12.2017
Autor: abakus


> Hallo
>  
> ich versuche folgende Aufgabenstellung zu lösen:
>  
> "Zeigen Sie: Wenn p eine Primzahl ist, so hat die Gleichung
> [mm]x^2=1[/mm] (mod p) nur die Lösungen x = 1 (mod p) und x = -1
> (mod p) (Tipp: [mm]x^2[/mm] - 1 = (x - 1)(x + 1))".
>  

[mm] $x^2\equiv [/mm] 1mod p$ gilt genau dann, wenn  [mm] $x^2-1\equiv [/mm] 0mod p$ bzw.  [mm] $(x-1)(x+1)\equiv [/mm] 0 mod p$.
Letzteres bedeutet, dass (x-1)(x+1) durch die Primzahl(!) p teilbar ist.
Das geht nur, wenn (p-1) oder (p+1) durch p teilbar ist.
Übersetze diese Erkenntnis wieder in eine Kongruenzaussage,

Bezug
                
Bezug
modulare Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:47 So 31.12.2017
Autor: sancho1980

Ich versuche gerade, deinen Ausführungen zu folgen:

> [mm]x^2\equiv 1mod p[/mm] gilt genau dann, wenn  [mm]x^2-1\equiv 0mod p[/mm]
> bzw.  [mm](x-1)(x+1)\equiv 0 mod p[/mm].
>  Letzteres bedeutet, dass
> (x-1)(x+1) durch die Primzahl(!) p teilbar ist.

Soweit komm ich noch mit.

>  Das geht nur, wenn (p-1) oder (p+1) durch p teilbar ist.

Wie soll das gehen?

Für welche Primzahl p gilt denn, dass (p-1) oder  (p+1) durch p teilbar ist?

Bezug
                        
Bezug
modulare Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:34 So 31.12.2017
Autor: abakus


> Ich versuche gerade, deinen Ausführungen zu folgen:
>  
> > [mm]x^2\equiv 1mod p[/mm] gilt genau dann, wenn  [mm]x^2-1\equiv 0mod p[/mm]
> > bzw.  [mm](x-1)(x+1)\equiv 0 mod p[/mm].
>  >  Letzteres bedeutet,
> dass
> > (x-1)(x+1) durch die Primzahl(!) p teilbar ist.
>  
> Soweit komm ich noch mit.
>  
> >  Das geht nur, wenn (p-1) oder (p+1) durch p teilbar ist.

>  
> Wie soll das gehen?
>  

Geht natürlich nicht, dummer Schreibfehler von mir.
Eigentlich meinte ich:
Das geht nur, wenn (x-1) oder (x+1) durch p teilbar ist.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 1h 44m 9. Diophant
ULinASon/Lineare Optimierung
Status vor 1h 46m 5. Gonozal_IX
ULinASon/Lineare Abhängigkeit
Status vor 2h 16m 2. Gonozal_IX
UStoc/Markov Kette: Definitionen
Status vor 23h 16m 2. matux MR Agent
SStatHypo/Welche Verfahren wählen?
Status vor 1d 17h 32m 3. leduart
SPoWi/Produktionsfunktion zeichnen
^ Seitenanfang ^
www.vorhilfe.de