www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "VK 60: Analysis" - Übungsserie 5, Aufgabe 1
Übungsserie 5, Aufgabe 1 < VK 60: Ana < Universität < Vorkurse < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "VK 60: Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Übungsserie 5, Aufgabe 1: Aufgabe 1
Status: (Übungsaufgabe) Übungsaufgabe Status 
Datum: 14:39 Di 13.03.2012
Autor: Blackwolf1990

Aufgabe
V-1: a) Sei a>0. Berechnen Sie den Grenzwert für n [mm] ->\infty [/mm] von [mm] a_{n}=\bruch{a^{2n}}{1+a^{2n+1}} [/mm]
b) Sei [mm] (a_{n})_{ n\ge 1} [/mm] eine reelle oder komplexe Nullfolge. Zeigen Sie, dass dann auch [mm] (\wurzel[k]{|a_{n}|})_{n\ge 1} [/mm] mit festem [mm] k\in \IN [/mm] eine Nullfolge ist.

Dies ist eine Übungsaufgabe für den Vorkurs "Analysis" hier im Forum, die von allen Teilnehmern (und Interessenten) beantwortet werden kann. (Es handelt sich also um kein gewöhnliches Hilfegesuch!)

        
Bezug
Übungsserie 5, Aufgabe 1: a)
Status: (Frage) beantwortet Status 
Datum: 15:17 Mi 21.03.2012
Autor: Kimmel

[mm] $a_n [/mm] = [mm] \frac{a^{2n}}{1+a^{2n+1}} [/mm] = [mm] \frac{1}{\frac{1}{a^{2n}}+a}$ [/mm]

1.Fall
$\ a > 1$: [mm] $\limes_{n\rightarrow\infty} \left( \frac{1}{\frac{1}{a^{2n}}+a} \right) [/mm] = [mm] \frac{1}{a}$ [/mm]

2.Fall
$\ a = 1$: [mm] $\limes_{n\rightarrow\infty} \left( \frac{1}{\frac{1}{a^{2n}}+a} \right) [/mm] = [mm] \frac{1}{1+a}$ [/mm]

3.Fall
$\ 0<a<1$: [mm] $\limes_{n\rightarrow\infty} \left( \frac{1}{\frac{1}{a^{2n}}+a} \right) [/mm] = 0 $

Bezug
                
Bezug
Übungsserie 5, Aufgabe 1: Antwort
Status: (Antwort) fertig Status 
Datum: 15:27 Mi 21.03.2012
Autor: fred97


> [mm]a_n = \frac{a^{2n}}{1+a^{2n+1}} = \frac{1}{\frac{1}{a^{2n}}+a}[/mm]
>  
> 1.Fall
>  [mm]\ a > 1[/mm]: [mm]\limes_{n\rightarrow\infty} \left( \frac{1}{\frac{1}{a^{2n}}+a} \right) = \frac{1}{a}[/mm]
>  
> 2.Fall
>  [mm]\ a = 1[/mm]: [mm]\limes_{n\rightarrow\infty} \left( \frac{1}{\frac{1}{a^{2n}}+a} \right) = \frac{1}{1+a}[/mm]
>  
> 3.Fall
>  [mm]\ 0


Es stimmt alles, aber es fehlen Begründungen !

FRED

Bezug
                        
Bezug
Übungsserie 5, Aufgabe 1: a) v1.1
Status: (Frage) beantwortet Status 
Datum: 15:32 Mi 21.03.2012
Autor: Kimmel

Begründungen dieser Art?

[mm] $a_n [/mm] = [mm] \frac{a^{2n}}{1+a^{2n+1}} [/mm] = [mm] \frac{1}{\frac{1}{a^{2n}}+a}$ [/mm]

1.Fall
$\ a > 1$:

[mm] $\limes_{n\rightarrow\infty} \left( \frac{1}{\frac{1}{a^{2n}}+a} \right) [/mm] = [mm] \frac{1}{a}$, [/mm] da [mm] $\limes_{n\rightarrow\infty} \left( \frac{1}{a^{2n}} \right) [/mm] = 0$

2.Fall
$\ a = 1$: [mm] $\limes_{n\rightarrow\infty} \left( \frac{1}{\frac{1}{a^{2n}}+a} \right) [/mm] = [mm] \frac{1}{1+a}$, [/mm] da [mm] $\limes_{n\rightarrow\infty} \left( \frac{1}{1^{2n}} \right) [/mm] = 1$

3.Fall
$\ 0<a<1$: [mm] $\limes_{n\rightarrow\infty} \left( \frac{1}{\frac{1}{a^{2n}}+a} \right) [/mm] = 0$, da [mm] $\limes_{n\rightarrow\infty} \left( \frac{1}{a^{2n}} \right) [/mm] = [mm] \infty [/mm] $

Bezug
                                
Bezug
Übungsserie 5, Aufgabe 1: Antwort
Status: (Antwort) fertig Status 
Datum: 15:38 Mi 21.03.2012
Autor: fred97


> Begründungen dieser Art?
>  
> [mm]a_n = \frac{a^{2n}}{1+a^{2n+1}} = \frac{1}{\frac{1}{a^{2n}}+a}[/mm]
>  
> 1.Fall
>  [mm]\ a > 1[/mm]:
>
> [mm]\limes_{n\rightarrow\infty} \left( \frac{1}{\frac{1}{a^{2n}}+a} \right) = \frac{1}{a}[/mm],
> da [mm]\limes_{n\rightarrow\infty} \left( \frac{1}{a^{2n}} \right) = 0[/mm]

O.K.


>  
>  
> 2.Fall
>  [mm]\ a = 1[/mm]: [mm]\limes_{n\rightarrow\infty} \left( \frac{1}{\frac{1}{a^{2n}}+a} \right) = \frac{1}{1+a}[/mm],
> da [mm]\limes_{n\rightarrow\infty} \left( \frac{1}{1^{2n}} \right) = 1[/mm]

Na, ja. Im Falle a=1 ist die Folge dovh konstant !


>  
> 3.Fall
>  [mm]\ 0
> da [mm]\limes_{n\rightarrow\infty} \left( \frac{1}{a^{2n}} \right) = \infty[/mm]

O.K.

FRED


Bezug
                                        
Bezug
Übungsserie 5, Aufgabe 1: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:42 Mi 21.03.2012
Autor: Kimmel

Danke.

> Na, ja. Im Falle a=1 ist die Folge dovh konstant !

Haha, ja, das stimmt.



Bezug
        
Bezug
Übungsserie 5, Aufgabe 1: b)
Status: (Frage) beantwortet Status 
Datum: 21:00 Mi 21.03.2012
Autor: Kimmel

Setze [mm] $b_n [/mm] = [mm] \sqrt[k]{|a_n|}-1 \ge [/mm] -1 $
(Da die Wurzel aufgrund der Positivität größer gleich null ist).

[mm] $|a_n| [/mm] = [mm] (b_n+1)^k [/mm] = [mm] \sum_{m=1}^{k} \vektor{k \\ m} b^m_n \ge b_n+1 [/mm] $

[mm] $\Rightarrow [/mm] 0 [mm] \le b_n+1 \le |a_n|$ [/mm]

[mm] $\Rightarrow [/mm] 0 [mm] \le \sqrt[k]{|a_n|} \le |a_n|$ [/mm]

Da [mm] a_n [/mm] eine Nullfolge ist, muss [mm] \sqrt[k]{|a_n|} [/mm] nach der Sandwich-Methode dies ebenfalls sein.

Bezug
                
Bezug
Übungsserie 5, Aufgabe 1: Antwort
Status: (Antwort) fertig Status 
Datum: 09:27 Do 22.03.2012
Autor: fred97


> Setze [mm]b_n = \sqrt[k]{|a_n|}-1 \ge -1[/mm]

Wozu ?


>  (Da die Wurzel
> aufgrund der Positivität größer gleich null ist).
>  
> [mm]|a_n| = (b_n+1)^k = \sum_{m=1}^{k} \vektor{k \\ m} b^m_n \ge b_n+1[/mm]

Das stimmt nicht. Das sieht man schon am Beispiel [mm] a_n=1/n [/mm]


FRED

>  
> [mm]\Rightarrow 0 \le b_n+1 \le |a_n|[/mm]
>  
> [mm]\Rightarrow 0 \le \sqrt[k]{|a_n|} \le |a_n|[/mm]
>  
> Da [mm]a_n[/mm] eine Nullfolge ist, muss [mm]\sqrt[k]{|a_n|}[/mm] nach der
> Sandwich-Methode dies ebenfalls sein.


Bezug
                        
Bezug
Übungsserie 5, Aufgabe 1: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:24 Do 22.03.2012
Autor: Kimmel

Ups, ich meinte

$ [mm] |a_n| [/mm] = [mm] (b_n+1)^k [/mm] = [mm] \sum_{m=0}^{k} \vektor{k \\ m} b^m_n \ge b_n+1 [/mm] $

(Laufindex war falsch)

Oder lag der Fehler woanders?

Bezug
                                
Bezug
Übungsserie 5, Aufgabe 1: Antwort
Status: (Antwort) fertig Status 
Datum: 08:20 Fr 23.03.2012
Autor: fred97


> Ups, ich meinte
>
> [mm]|a_n| = (b_n+1)^k = \sum_{m=0}^{k} \vektor{k \\ m} b^m_n \ge b_n+1[/mm]
>  
> (Laufindex war falsch)
>  
> Oder lag der Fehler woanders?

Die Ungleichung [mm] |a_n| \ge b_n+1 [/mm] ist einfach falsch !!!

Nimm mal an sie wäre richtig, also

                   [mm] |a_n| \ge \wurzel[k]{|a_n|} [/mm]

Dann folgt:

                    [mm] |a_n|^k \ge |a_n|. [/mm]

Wenn jetzt alle [mm] a_n \ne [/mm] 0 sind (was z.B. bei [mm] a_n=1/n [/mm] der Fall ist), so haben wir:

                   [mm] |a_n|^{k-1} \ge [/mm] 1  für alle n.

Ist k [mm] \ge [/mm] 2, so kann [mm] (a_n) [/mm] nie und nimmer eine Nullfolge sein.

FRED



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "VK 60: Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de