www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Konvergenzkriterium
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Konvergenzkriterium

Sätze Konvergenzkriterien für Reihen


Universität


Satz (Leibniz-Kriterium) Sei $ (a_n) $ eine monoton fallende Nullfolge reeller Zahlen.
Dann ist die alternierende Reihe $ \summe_{n=0}^{\infty} (-1)^n a_n=a_0-a_1+a_2-\ldots $ konvergent, und für ihre Summe gilt

$ s_{2k+1}\le \summe_{n=0}^{\infty} (-1)^n a_n\le s_{2k} $,


wobei $ s_m=\summe_{n=0}^{m} (-1) a_n $, die m-te Partialsumme ist.
Insbesondere gilt die Fehlerabschätzung

$ \left|\summe_{n=0}^{\infty} (-1)^n a_n-s_m\right|\le a_{m+1} $.

Quelle: (1)


Satz (Cauchysches Konvergenzkriterium) Die Reihe $ \summe_{k=0}^{\infty} a_k $ komplexer Zahlen konvergiert genau dann, wenn es zu jedem $ \varepsilon>0 $ ein $ n_0\in\IN $ gibt mit $ \left|\summe_{k=m}^{n}a_k \right|\le \varepsilon $ für alle $ n\ge m\ge n_0 $.

Quelle: (1)


Satz (Majorantenkriterium) Es seien $ \summe b_k $ eine konvergente Reihe reeller Zahlen $ b_k\ge 0 $ und $ \summe a_k $ eine Reihe komplexer Zahlen.
Gilt $ |a_k|\le b_k $ für alle $ k\in\IN $, so konvergiert auch $ \summe a_k $, und zwar sogar absolut. Es gilt $ \left|\summe_{k=0}^{\infty} a_k\right|\le\summe_{k=0}^{\infty} b_k $.

Quelle: (1)


Satz (Quotientenkriterium) Es sei $ \summe_{k=0}^{\infty} a_k $ eine Reihe komplexer Zahlen mit $ a_k\not=0 $ für fast alle $ k $. Ferner gebe es eine reelle Zahl $ q $ mit $ 0<q<1 $ und $ \left|\bruch{a_{k+1}}{a_k}\right|\le q $ für fast alle $ k\in\IN $.
Dann ist die Reihe $ \summe_{k=0}^{\infty} a_k $ absolut konvergent.
Insbesondere konvergiert $ \summe_{k=0}^{\infty} a_k $ absolut, wenn die Folge der Quotienten $ \left|\bruch{a_{k+1}}{a_k}\right| $ gegen eine Zahl $ <1 $ konvergiert.

Quelle: (1)


Satz (Wurzelkriterium) Es sei $ \summe_{k=0}^{\infty} a_k $ eine Reihe komplexer Zahlen.
Gilt $ \limsup_{n\to\infty} \wurzel[n]{|a_n|} < 1 $ oder $ \wurzel[n]{|a_n|}< q $ für eine positive Zahl $ 0\le q<1 $ für fast alle Indizes $ n>n_0 $, so konvergiert die Reihe $ \summe_{k=0}^{\infty} a_k $ und zwar sogar absolut.
Gilt $ \wurzel[n]{|a_n|}\ge 1 $ für unendlich viele $ n $, so ist die Reihe $ \summe_{k=0}^{\infty} a_k $ divergent.

Quelle: (2)


Quelle: (1)


Quelle: (1)


Quelle: (1)


Quelle: (1)


Satz (Integralkriterium für Reihen) Sei $ f:\IR_+\to\IR $ eine monotone und stetige Funktion.
Genau dann konvergiert die Reihe $ \summe_{n=0}^{\infty} f(n) $, wenn das Integral $ \integral_0^{\infty} f(t)\text{dt} $ konvergiert.

Quelle: (1)


Quellen

(1) isbn3411032049
(2) Mathe-Online-Lexikon

Bemerkungen.

Weitere Bemerkungen zum Verständnis des Satzes.


Beispiele.


Beweis.


Erstellt: Mi 24.11.2004 von Marc
Letzte Änderung: Di 19.07.2011 um 15:20 von Nisse
Weitere Autoren: Loddar, rainerS
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.vorhilfe.de