www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen
   Einstieg
   
   Index aller Artikel
   
   Hilfe / Dokumentation
   Richtlinien
   Textgestaltung
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Teleskopsumme
Mach mit! und verbessere/erweitere diesen Artikel!
Artikel • Seite bearbeiten • Versionen/Autoren

Teleskopsumme

Ist $ (\IK,+,\cdot{}) $ ein Körper und ist $ (a_n)_{n \in \IN} \in \IK^{\IN} $ eine Folge in $ \IK\,, $ so bezeichnen wir für $ n \in \IN $ eine Summe der Form

$ \sum_{k=1}^n (a_{k+1}-a_k) $

als Teleskopsumme.

Für eine solche gilt

$ (*)\;\;\;\sum_{k=1}^n (a_{k+1}-a_k)=\sum_{k=2}^{n+1} a_{k}\;- \sum_{k=1}^n a_k=a_{n+1}-a_1\,. $

Beispiel:
$ \bullet $ Besonders nützlich ist die Teleskopsumme bei der Berechnung des Reihenwertes von $ \sum_{k=1}^\infty \frac{1}{k(k+1)}=\lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k(k+1)}\,. $ Für jedes $ k\, $ gilt nämlich offenbar

$ \frac{1}{k(k+1)}=\frac{1}{k}-\frac{1}{k+1}\equiv:a_k-a_{k+1}\,, $

so dass sich mit $ (*) $ folgendes ergibt
$ \sum_{k=1}^\infty \frac{1}{k(k+1)}=\lim_{n \to \infty} \sum_{k=1}^n \frac{1}{k(k+1)}=-\lim_{n \to \infty}\sum_{k=1}^n (a_{k+1}-a_k) $

$ \underset{(*)}{=}-\lim_{n \to \infty}(a_{n+1}-a_1)=-\lim_{n \to \infty}\left(\frac{1}{n+1}-a_1\right)=-0-(-1)=1\,. $

Bemerkung:
Offenbar gibt es folgenden trivialen Zusammenhang zwischen einem endlichen Produkt und der Teleskopsumme:
Sind alle $ a_n > 0\,, $ so folgt

$ \blue{\ln(\frac{a_{n+1}}{a_1})=\ln(\produkt_{k=1}^n \frac{a_{k+1}}{a_k})=\sum_{k=1}^n (\ln(a_{k+1})-\ln(a_k))}=\ln(a_{n+1})-\ln(a_1)\,. $

Dabei wurde die Regel $ \ln(a/b)=\ln(a)-\ln(b) $ für $ a,b > 0\, $ angewendet; die interessante Beziehung dabei ist blaumarkiert, und sie ist interessant in der Anwendung, wenn man sie von rechts nach links benutzt.

Beispiel zur Bemerkung:
Man betrachte $ \sum_{k=1}^n \ln(1+\tfrac{1}{k})\,. $ Hier gilt

$ \sum_{k=1}^n \ln(1+\tfrac{1}{k})=\sum_{k=1}^n \ln(\tfrac{k+1}{k})=\sum_{k=1}^n (\ln(k+1)-\ln(k))=\ln(n+1)-\ln(1)=\ln(n+1)\,. $

Arbeitet man lieber mit Produkten, so kann man unter Verwendung des blaumarkierten Teils auch rechnen

$ \sum_{k=1}^n \ln(1+\tfrac{1}{k})=\sum_{k=1}^n \ln(\tfrac{k+1}{k})=\ln(\produkt_{k=1}^n \tfrac{k+1}{k})=\ln(\tfrac{n+1}{1})=\ln(n+1)\,. $

Hier wurde die Beziehung $ \ln(ab)=\ln(a)+\ln(b) $ für $ a,b > 0\, $ verwendet.

Teleskopsummen verwendet man insbesondere, um Aussagen über Teleskopreihen erzielen zu können! Ferner nennt man eine Teleskopsumme auch Ziehharmonikasumme.

(Zudem: Siehe auch Teleskopverknüpfung.)

Erstellt: Mo 09.08.2010 von Marcel
Letzte Änderung: So 09.02.2014 um 22:09 von Marcel
Artikel • Seite bearbeiten • Versionen/Autoren • Titel ändern • Artikel löschen • Quelltext

^ Seitenanfang ^
www.vorhilfe.de