www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Abbildungen und Matrizen" - Abbildungsmatrizen bei Geraden
Abbildungsmatrizen bei Geraden < Abbildungen+Matrizen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Abbildungsmatrizen bei Geraden: Ursprungsgerade von Matrize
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 16:36 Di 30.10.2007
Autor: nucleophile_addition

Hallo,

ich habe nur eine Abbildungsmatrix gegeben und solle anhand dieser zeigen, dass diese für die Spiegelung einer Ursprungsgerade ist. Außerdem soll ich die Parametergleichung der Geraden angeben.

Alles spielt sich im zweideminsionalen Raum ab. Währe nett, wenn ihr mir helfen könntet.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Abbildungsmatrizen bei Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 16:53 Di 30.10.2007
Autor: leduart

Hallo
Hier gilt das gleiche wie bei deiner anderen Aufgabe: was sind deine Ansätze?
was passiert denn mit der Geraden an der man spiegelt bei der Spiegelung?
Gruss leduart

Bezug
                
Bezug
Abbildungsmatrizen bei Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:56 Di 30.10.2007
Autor: nucleophile_addition

Also ich weiss ja, dass die Gerade G den Punkt (0/0) hat und die Abbildungsmatrix sich aus u und v berechnen. Nun weiss ich aber auch nichtmehr weiter....ein paar hilfestellungen bitte :)

Bezug
                        
Bezug
Abbildungsmatrizen bei Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 17:35 Di 30.10.2007
Autor: leduart

Hallo
1. Bei ner Spiegelung an ner Ursprungsgeeraden wird (0,0) auf sich selbst abgebildet.
2. ein [mm] Vektor,(x,y)^T [/mm] der auf der Geraden liegt, wird auf sich abgebildet!
also such einen Vektor der auf sich abgebildet wird, d.h. [mm] A*(x,y)^T=(x,y)^T [/mm]
3. Eine Spiegelung ist Längentreu, d.h. die Spaltenvektoren müssen die Länge 1 haben.
Gruss leduart

Bezug
                                
Bezug
Abbildungsmatrizen bei Geraden: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:42 Di 30.10.2007
Autor: nucleophile_addition

Das beantwortet aber nicht meine aufgabe. ich habe nur ne abbildungsmatritze gebene und soll beweisen, dass diese für eine ursprungsgerade ist. wenn ich die abbildungsmatritze mit (o/0) multipliziere, bekomme ich 0 raus, aber wie krieg ich die gesamte parameterdarstellung raus?

danke

Bezug
                                        
Bezug
Abbildungsmatrizen bei Geraden: Antwort
Status: (Antwort) fertig Status 
Datum: 18:22 Di 30.10.2007
Autor: leduart


Hallo
du hast also raus, dass 0 auf sich selbst abgebildet wird. Zu meinem zweiten Rat hast du nix gesagt.
ne Matrix ist übrigens  keine Matrize!
Gruss leduart


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Abbildungen und Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de