Analytische Geometrie - Gerade < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 12:55 Sa 07.04.2007 | Autor: | matt57 |
Aufgabe | Beweise, dass drei Punkte P1, P2, P3 mit Koordinatenvektoren
(a1,b1); (a2,b2); (a3,b3) genau dann auf einer Geraden liegen, wenn (1,a1, b2 - Verbessert nach Hinweis: b1!); (1,a2,b2); (1,a3,b3) aus [mm] R^3 [/mm] linear abhängig sind. |
Mir ist der Vorgang eigentlich völlig klar, nur finde ich keinen Weg, das auch aufzuschreiben.
Mein Ansatz wäre:
Seien die Vektoren die P1 in P2 und P1 in P3 überführen linear abhängig, dann liegen alle Punkte auf einer Geraden.
Also müsste gelten: v1 (Vektor der P1 in P2 überführt) + v2 (Vektor der P2 in P3 überführt) = v3 (Vektor der P1 in P3 überführt.... oder auch v1-v3=-v2... oder v3-v2=v1. Wie kann man jetzt die Koordinatenschreibweise anwenden?
Benötige Hilfe, um den Beweis zu formulieren.
Danke und Grüße
|
|
|
|
Hallo,
Überprüfe bitte nochmal die Vektoren..
bilde doch einfach die Determinate, der 3 Vektoren, und die müsste dann det=0 sein. Das reicht dann als Beweis.
Überprüfe bitte nochmal die Vektoren.... da wenn ich det ausrechne komm ich nur auf 0 wenn [mm] a_1=a_2 [/mm] und das ist ja Schwachsinn.
Liebe Grüße
Andreas
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 13:39 Sa 07.04.2007 | Autor: | matt57 |
Hallo
Erstmal Danke! Der erste Vektor ist natürlich (1,a1,b1).
Müsste ich nicht einen "genau dann, wenn" Beweis in zwei Richtungen führen?
Also hier beweisen wir in eine Richtung , dass die Vektoren linear abhängig sind (mit Determinante = 0 wäre das ja ok)
Doch dann ebenso beweisen in Gegenrichtung, dass die Vektoren äquivalent zur Koordinatendarstellung der Punkte sind.
Mein Vorschlag wäre, das über den gleichen Rang zu machen... geht das?
Grüße
|
|
|
|
|
Hallo,
wenn du zeigst, dass der Rang der Koeffizientenmatrix deiner 3 Vektoren aus [mm] \IR^3 [/mm] den Rang 2 hat, dann zeigst du dass, die 3 Vektoren eine Ebene aufspannen, wenn man es hnbekäme zu zeigen, dass der Rang 1 ruaskommt, dann wäre gezeigt, dass die 3 Vekotren aus dem [mm] \IR^3 [/mm] auf einer Geraden liegen.
Wenn man dies dann in den [mm] \IR^2 [/mm] projiziert müsste man auf die 3 Ortsvektoren der Punkte kommen...
... so eine Überlegung. Ich weiß nur net auf Anhieb, wie man das projiziert.
Liebe Grüße
Andreas
|
|
|
|