www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Bel. oft Differenzierbar
Bel. oft Differenzierbar < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bel. oft Differenzierbar: Idee
Status: (Frage) beantwortet Status 
Datum: 13:15 Mo 17.11.2014
Autor: arraneo

Hallo alle,

die Aufgabe lautet:

Sei [mm] f:R\to [/mm] R stetig, a<b und sei [mm] \phi :R\to [/mm] R definiert durch:

[mm] \phi(\lambda):=\integral_a^b e^{\lambda f(x)} [/mm] dx.

Beweisen Sie, dass [mm] \phi [/mm] beliebig oft diff'bar ist und es gilt:

[mm] \phi^n(0)=\integral_a^b (f(x))^n [/mm] dx.  


Meine ersten Gedanken wären, dass erstmal die erste Ableitung einfach diese Exponentialfunktion ist, sprich:

[mm] \phi'(\lambda)= e^{\lambda f(x)} \Big|_a^b, [/mm] wobei

[mm] \phi''(\lambda) [/mm] = [mm] e^{\lambda f(x)} \cdot \lambda \cdot [/mm] f'(x) [mm] \Big|_a^b [/mm] .

Stimmt das soweit?

wobei die zweite Frage wäre: wenn das soweit stimmt, brauche ich f(x) nicht auch bel. oft diff'bar zu haben?

Aus reiner Stetigkeit der Funktion f kann man nicht folgern, dass die Funktion diff'bar ist, nicht mal aufm Intervall (a,b) , also hätte jemanden eine Idee, wie ich hier weiterkomme ?

vielen vielen Dank !!
lg,
arraneo


        
Bezug
Bel. oft Differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 13:29 Mo 17.11.2014
Autor: fred97


> Hallo alle,
>
> die Aufgabe lautet:
>
> Sei [mm]f:R\to[/mm] R stetig, a<b und sei [mm]\phi :R\to[/mm] R definiert
> durch:
>
> [mm]\phi(\lambda):=\integral_a^b e^{\lambda f(x)}[/mm] dx.
>
> Beweisen Sie, dass [mm]\phi[/mm] beliebig oft diff'bar ist und es
> gilt:
>
> [mm]\phi^n(0)=\integral_a^b (f(x))^n[/mm] dx.  
>
>
> Meine ersten Gedanken wären, dass erstmal die erste
> Ableitung einfach diese Exponentialfunktion ist, sprich:
>
> [mm]\phi'(\lambda)= e^{\lambda f(x)} \Big|_a^b,[/mm]

Wie kommst Du darauf ?


>  wobei
>
> [mm]\phi''(\lambda)[/mm] = [mm]e^{\lambda f(x)} \cdot \lambda \cdot[/mm]
> f'(x) [mm]\Big|_a^b[/mm] .
>
> Stimmt das soweit?

Nein.

Es gilt:

[mm] \phi'(\lambda)=\integral_a^b \bruch{d}{d \lambda}(e^{\lambda f(x) })dx=\integral_a^b f(x)*e^{\lambda f(x)} [/mm] dx.


FRED



>
> wobei die zweite Frage wäre: wenn das soweit stimmt,
> brauche ich f(x) nicht auch bel. oft diff'bar zu haben?
>
> Aus reiner Stetigkeit der Funktion f kann man nicht
> folgern, dass die Funktion diff'bar ist, nicht mal aufm
> Intervall (a,b) , also hätte jemanden eine Idee, wie ich
> hier weiterkomme ?
>
> vielen vielen Dank !!
> lg,
> arraneo
>  


Bezug
                
Bezug
Bel. oft Differenzierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:03 Mo 17.11.2014
Autor: arraneo

hey Fred! vielen Dank,

das stimmt, habe mich mit der Variable geirrt. .

Abgesehen davon, dachte ich mir: wenn F(x) die Stammfunktion von f ist, dann gilt: F'(x)=f. ,aber das Integral ist ja in dx und nicht [mm] d\lambda, [/mm] jetzt kapiere ich was du meinst.

d.h. also, es gelte:

[mm] \phi''(\lambda)= \integral_a^b \frac{d}{d\lambda} \Big( [/mm] f(x) [mm] e^{\lambda f(x)} \Big) [/mm] dx = [mm] \integral_a^b f(x)^2 e^{\lambda f(x)} [/mm] dx

und insgesamt wäre die Induktionsvoraussetzung :

[mm] \phi^n(\lambda) =\integral_a^b f(x)^n e^{\lambda f(x)} [/mm] dx , wo dann natürlich gelte:

[mm] \phi^n(0) =\integral_a^b f(x)^n e^{0 \cdot f(x)} dx=\integral_a^b f(x)^n [/mm]  dx .

Könntest du mir bitte den Induktionsbeweis überprüfen?



Beweis: für [mm] k\in [/mm] N , [mm] 1\le [/mm] k [mm] \le [/mm] n gelte:
IV: [mm] \phi^k(\lambda) =\integral_a^b f(x)^k e^{\lambda f(x)} [/mm] dx
IA: für k=1  haben wir schon überprüft.

IS: [mm] k\to [/mm] k+1

[mm] \phi^{k+1}(\lambda) =\integral_a^b \frac{d}{d\lambda} \Big( f(x)^k e^{\lambda f(x)} [/mm] dx [mm] \Big) \hfill [\because [/mm] Induktionsvoraussetzung]

[mm] =\integral_a^b f(x)^k \cdot\frac{d}{d\lambda} \Big( e^{\lambda f(x)} \Big)dx=\integral_a^b f(x)^k \cdot \Big( [/mm] f(x) [mm] \cdot e^{\lambda f(x)} \Big)dx=\integral_a^b \Big( f(x)^k \cdot [/mm]  f(x) [mm] \cdot e^{\lambda f(x)} \Big)dx [/mm]

[mm] =\integral_a^b f(x)^{k+1} \cdot e^{\lambda f(x)} [/mm] dx [mm] \Box [/mm]

stimmt das ?  

vielen Dank!

arraneo


Bezug
                        
Bezug
Bel. oft Differenzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 15:14 Mo 17.11.2014
Autor: fred97


> hey Fred! vielen Dank,
>
> das stimmt, habe mich mit der Variable geirrt. .
>
> Abgesehen davon, dachte ich mir: wenn F(x) die
> Stammfunktion von f ist, dann gilt: F'(x)=f. ,aber das
> Integral ist ja in dx und nicht [mm]d\lambda,[/mm] jetzt kapiere ich
> was du meinst.
>
> d.h. also, es gelte:
>
> [mm]\phi''(\lambda)= \integral_a^b \frac{d}{d\lambda} \Big([/mm]
> f(x) [mm]e^{\lambda f(x)} \Big)[/mm] dx = [mm]\integral_a^b f(x)^2 e^{\lambda f(x)}[/mm]
> dx
>
> und insgesamt wäre die Induktionsvoraussetzung :
>
> [mm]\phi^n(\lambda) =\integral_a^b f(x)^n e^{\lambda f(x)}[/mm] dx
> , wo dann natürlich gelte:
>
> [mm]\phi^n(0) =\integral_a^b f(x)^n e^{0 \cdot f(x)} dx=\integral_a^b f(x)^n[/mm]
>  dx .
>
> Könntest du mir bitte den Induktionsbeweis überprüfen?
>
>
>
> Beweis: für [mm]k\in[/mm] N , [mm]1\le[/mm] k [mm]\le[/mm] n gelte:
> IV: [mm]\phi^k(\lambda) =\integral_a^b f(x)^k e^{\lambda f(x)}[/mm]
> dx
> IA: für k=1  haben wir schon überprüft.
>
> IS: [mm]k\to[/mm] k+1
>
> [mm]\phi^{k+1}(\lambda) =\integral_a^b \frac{d}{d\lambda} \Big( f(x)^k e^{\lambda f(x)}[/mm]
> dx [mm]\Big) \hfill [\because[/mm] Induktionsvoraussetzung]
>  
> [mm]=\integral_a^b f(x)^k \cdot\frac{d}{d\lambda} \Big( e^{\lambda f(x)} \Big)dx=\integral_a^b f(x)^k \cdot \Big([/mm]
> f(x) [mm]\cdot e^{\lambda f(x)} \Big)dx=\integral_a^b \Big( f(x)^k \cdot[/mm]
>  f(x) [mm]\cdot e^{\lambda f(x)} \Big)dx[/mm]
>  
> [mm]=\integral_a^b f(x)^{k+1} \cdot e^{\lambda f(x)}[/mm] dx [mm]\Box[/mm]
>  
> stimmt das ?  

Ja

FRED

>
> vielen Dank!
>
> arraneo
>  


Bezug
                                
Bezug
Bel. oft Differenzierbar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:23 Mo 17.11.2014
Autor: arraneo

DANKE!! bist der Beste !!

bis zum nächsten Beweis :)

LG,

arraneo

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de