www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Mechanik" - Bestimmung der Stabkräfte
Bestimmung der Stabkräfte < Mechanik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Bestimmung der Stabkräfte: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:27 Mi 15.02.2012
Autor: Melly

Aufgabe
Eine homogene Platte vom Gewicht G wird durch sechs Stäbe in der waagerechten Lage gehalten und durch die Kraft F belastet (siehe Abbildung a). Es sind die Stabkräfte zu bestimmen.


Eine homogene Platte vom Gewicht G wird durch sechs Stäbe in der waagerechten Lage gehalten und durch die Kraft F belastet (siehe Abbildung a). Es sind die Stabkräfte zu bestimmen.
Hallo,

also die Lösung der Aufgabe habe ich bereits, das Problem liegt eher beim Nachvollziehen. In dem Freikörperbild sind ja die Seilkräfte als Zugkräfte eingezeichnet und man hat die Hilfswinkel [mm] \alpha [/mm] und [mm] \beta [/mm] eingeführt.

Bis zu den Gleichgewichtsbedingungen habe ich alles verstanden und auch genauso nachgerechnet, doch bei den letzten Formeln versteh ich nicht, wie man darauf kommen soll.

Also nach den Gleichgewichtsbedingungen erhält man:

[mm] \summe_{}^{} F_i_x [/mm] = 0 : [mm] -S_3\*cos\beta [/mm] - [mm] S_6\*cos\beta [/mm] = 0

[mm] \summe_{}^{} F_i_y [/mm] = 0 : [mm] S_4\*cos\alpha [/mm] - [mm] S_5\*cos\alpha [/mm] + F = 0

[mm] \summe_{}^{} F_i_z [/mm] = 0 : [mm] -S_1 [/mm] - [mm] S_2 [/mm] - [mm] S_3\*sin\beta [/mm] - [mm] S_6\*sin\beta [/mm] - [mm] S_4\*sin\alpha [/mm] - [mm] S_5\*sin\alpha [/mm] - G = 0


[mm] \summe_{}^{} M_i_x^{(0)} [/mm] = 0 : a [mm] S_1 [/mm] - a [mm] S_2 [/mm] + a [mm] S_6\*sin\beta [/mm] - a [mm] S_3\*sin\beta [/mm] = 0

[mm] \summe_{}^{} M_i_y^{(0)} [/mm] = 0 : [mm] \bruch{b}{2} [/mm] G + b [mm] S_1 [/mm] + b [mm] S_2 [/mm] + b [mm] S_6\*sin\beta [/mm] + b [mm] S_3 \*sin\beta [/mm] = 0

[mm] \summe_{}^{} M_i_z^{(0)} [/mm] = 0 : b F + a [mm] S_3\*cos\beta [/mm] - a [mm] S_6\*cos\beta [/mm] = 0

Daraus folgt:

[mm] cos\alpha=sin\alpha= \bruch{a}{\wurzel{2a^2}} [/mm] [/b] = [mm] \bruch{\wurzel{2}}{2} [/mm]

[mm] cos\beta [/mm] = [mm] \bruch{b}{\wurzel{a^2+b^2}} [/mm] und [mm] sin\beta [/mm] = [mm] \bruch{a}{\wurzel{a^2+b^2}} [/mm]

Wie kommt man auf die letzten 2 Gleichungen ? Bei [mm] \alpha [/mm] betrachtet man wahrscheinlich das gleichschenklige Dreieck mit der Länge a. Aber wie kommt man dann nur  auf die [mm] cos\alpha=sin\alpha [/mm] Beziehung? Und wie/warum wurde das so umgeformt? Eine Zeichnung mit den Maßen habe ich beigefügt. [a]Datei-Anhang

Ich bedanke mich im Voraus.


Dateianhänge:
Anhang Nr. 1 (Typ: jpg) [nicht öffentlich]
        
Bezug
Bestimmung der Stabkräfte: Antwort
Status: (Antwort) fertig Status 
Datum: 19:44 Mi 15.02.2012
Autor: Steffi21

Hallo

bedenke, im rechtwinkligen Dreieck gilt:

Cosinus vom Winkel gleich Ankathete durch Hypotenuse

Sinus vom Winkel gleich Gegenkathete durch Hypotenuse

Steffi

Bezug
                
Bezug
Bestimmung der Stabkräfte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:17 Mi 15.02.2012
Autor: Melly

Hallo Steffi,


danke für die schnelle Antwort :) also kann man [mm] cos\alpha=sin\alpha [/mm] setzen. Dann kommt man ja auf: [mm] \bruch{a}{Hyp} [/mm]

wieso gilt hier für die Hypotenuse: [mm] \wurzel{2a^2} [/mm]

für [mm] \bruch{a}{\wurzel{2a^2}} [/mm] = [mm] \bruch{\wurzel{2}}{2} [/mm] ?

Bezug
                        
Bezug
Bestimmung der Stabkräfte: Antwort
Status: (Antwort) fertig Status 
Datum: 20:36 Mi 15.02.2012
Autor: Steffi21

Hallo in meinem Bild erkennst du die Stäbe 4 und 5

[Dateianhang nicht öffentlich]

es handelt sich um gleichschenklige/rechtwinklige Dreiecke, somit [mm] \alpha=45^{0} [/mm]

[mm] sin(\alpha)=cos(\alpha)=\bruch{a}{\wurzel{a^{2}+a^{2}}}=\bruch{a}{\wurzel{2a^{2}}}=\bruch{a}{\wurzel{2}a}=\bruch{1}{\wurzel{2}} [/mm]

jetzt mit [mm] \wurzel{2} [/mm] erweitern

[mm] =\bruch{1*\wurzel{2}}{\wurzel{2}*\wurzel{2}}=\bruch{\wurzel{2}}{2} [/mm]

Steffi



Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                                
Bezug
Bestimmung der Stabkräfte: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:34 Do 16.02.2012
Autor: Melly

Hallo Steffi,

ich danke Dir vielmals für die ausführliche Antwort, endlich komm ich auf das richtige Ergebnis.

Viele Grüße, melly

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mechanik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de