www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Reihen" - Erzeugende Funktionen
Erzeugende Funktionen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Erzeugende Funktionen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:50 Mi 21.11.2012
Autor: s1mn

Aufgabe
Eine Folge [mm] (a_{n}) [/mm] sei rekursiv durch [mm] a_{0} [/mm] = 0, [mm] a_{1} [/mm] = 3
[mm] a_{n} [/mm] = 7 [mm] a_{n-1} [/mm] - 10 [mm] a_{n-2} [/mm] für n [mm] \ge [/mm] 2 (R)
erklärt.
Im folgenden wollen wir eine explizite Formel für [mm] a_{n} [/mm] bestimmen.

(a) Betrachten Sie die formale Reihe f(x) = [mm] \summe_{k=0}^{\infty} a_{k}x^{k} [/mm] und versuchen Sie, aus (R) auf eine Darstellung für f(x) herzuleiten.

(b) Entwickeln Sie die Darstellung von f(x) wieder in eine Potenzreihe und versuchen Sie auf [mm] (a_{n}) [/mm] zu schließen.

(c) Kontrollieren Sie, dass Ihre Lösung der Gleichung (R) genügt.

Hallo Leute,

also hab ne Frage zu der obigen Aufgabe.
Die (a) hab ich hinbekommen, d.h. meine Funktion ist f(x) = [mm] \bruch{3x}{10x^{2}-7x+1}. [/mm] Das entspricht dem Kontrollergebnis das angegeben ist.

Nun zur (b).
Da hab ich mit Partialbruchzerlegung angefangen und bekomme dann:
[mm] \bruch{3x}{10x^{2}-7x+1} [/mm] = [mm] \bruch{1}{2x-1} [/mm] - [mm] \bruch{1}{5x-1}. [/mm]
Also Nullstellen [mm] \bruch{1}{2} [/mm] und [mm] \bruch{1}{5}. [/mm]

Das kann man beides dann mithilfe der geometrischen Reihe in ne Reihe umschreiben mit der Bedingung |x| < [mm] \bruch{1}{5}: [/mm]

- [mm] \bruch{1}{1-2x} [/mm] + [mm] \bruch{1}{1-5x} [/mm] = [mm] \summe_{n=0}^{\infty} (5x)^{n} [/mm] - [mm] \summe_{n=0}^{\infty} (2x)^{n} [/mm]  = [mm] \summe_{n=0}^{\infty} (5^{n}- 2^{n}) x^{n}. [/mm]

Dann wäre meine Folge [mm] b_{n} [/mm] = [mm] 5^{n} [/mm] - [mm] 2^{n}. [/mm]
Wenn ich dann die Werte n=0 und n=1 einsetze bekomme ich die Anfangswerte [mm] a_{0} [/mm] und [mm] a_{1}. [/mm]

Ist die Aufgabe (b) damit fertig ?

Und was muss ich bei der (c) machen ?

        
Bezug
Erzeugende Funktionen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:04 Mi 21.11.2012
Autor: Teufel

Hi!

Sieht alles gut aus.

Du sollst bei der c) nur noch schauen, ob auch wirklich [mm] b_n=7*b_{n-1}-10*b_{n-2} [/mm] ist. Sollte aber stimmen!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de