www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Extremwertprobleme" - Extremwertaufgabe
Extremwertaufgabe < Extremwertprobleme < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Extremwertaufgabe: Tipp
Status: (Frage) beantwortet Status 
Datum: 12:34 Mo 04.05.2015
Autor: Ferdie

Aufgabe
Der zeitliche Verlauf der Kondensatorspannung U(t) bei einem Auf- und Entladevorgang eines Kondensators an einer Gleichspannungsquelle über einen konstanten Widerstand kann näherungsweise durch
U(t)= k* e^-t * (1- e^-t) mit t>=0 beschrieben werden. Bestimmen sie den Zeitpunkt an dem die Spannung maximal ist

Um den Extrempunkt zu bestimmen muss ich die Ableitung von U(t) bilden und gleich null setzen.

Mit Hilfe der Produktregel ergibt sich:

U'(t) = vu'+ uv'

        =  k*e^-t * t * e^-t  +  -tk e^-t * (1-e^-t)

Stimmt das?
Und wie kann ich das weiter vereinfachen?
Stehe gerade irgendwie auf dem Schlauch



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt



        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 12:48 Mo 04.05.2015
Autor: fred97


> Der zeitliche Verlauf der Kondensatorspannung U(t) bei
> einem Auf- und Entladevorgang eines Kondensators an einer
> Gleichspannungsquelle über einen konstanten Widerstand
> kann näherungsweise durch
>  U(t)= k* e^-t * (1- e^-t) mit t>=0 beschrieben werden.
> Bestimmen sie den Zeitpunkt an dem die Spannung maximal
> ist
>  Um den Extrempunkt zu bestimmen muss ich die Ableitung von
> U(t) bilden und gleich null setzen.
>  
> Mit Hilfe der Produktregel ergibt sich:
>  
> U'(t) = vu'+ uv'
>  
> =  k*e^-t * t * e^-t  +  -tk e^-t * (1-e^-t)
>  
> Stimmt das?

Nein. Die Ableitung von [mm] e^{-t} [/mm] ist gegeben durch $- [mm] e^{-t}$ [/mm]


FRED

>  Und wie kann ich das weiter vereinfachen?
>  Stehe gerade irgendwie auf dem Schlauch
>  
>
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
>  
>  


Bezug
                
Bezug
Extremwertaufgabe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:11 Mo 04.05.2015
Autor: Ferdie

Also lautet die Ableitung dann

k*e^-t * -t * e^-t  +  -tk e^-t * (1-e^-t) ?

Bezug
                        
Bezug
Extremwertaufgabe: Antwort
Status: (Antwort) fertig Status 
Datum: 17:02 Mo 04.05.2015
Autor: Marcel

Hallo,

> Also lautet die Ableitung dann
>  
> k*e^-t * -t * e^-t  +  -tk e^-t * (1-e^-t) ?

bitte nicht nur Brocken hinwerfen - und man schreibt auch nicht ...+ -t..., sondern
...+ (-t)...: Es war

    $U(t)= k* [mm] e^{-t} [/mm] * (1- [mm] e^{-t})$, [/mm]

dann ist

    [mm] $dU(t)/dt\;=\;k*(-1)*e^{-t}*(1-e^{-t})+k*e^{-t}*(-(-1)*e^{-t})$ [/mm]

    [mm] $=-ke^{-t}+ke^{-2t}+ke^{-2t}=ke^{-2t}*(2-e^{t})$ [/mm]

Vgl. auch []Wolframalpha

Zum weiteren Vorgehen: Es wird wohl sinnvoll sein, $k [mm] \neq [/mm] 0$ anzunehmen. Dann
ist

    [mm] $U\,'(t)=0$ [/mm]

genau dann, wenn

    [mm] ($ke^{-2t}=0$ [/mm] oder [mm] $2-e^{t}=0$). [/mm]

Da für $k [mm] \neq [/mm] 0$ aber durchweg [mm] $ke^{-2t} \neq 0\,$ [/mm] ist...

P.S. Denke dran, dass Du auch noch nachweisen musst, dass die potentielle
Extremstelle wirklich eine ist, und dass die Funktion dort auch ihr Maximum
annimmt!

Gruß,
  Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Extremwertprobleme"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


Alle Foren
Status vor 6h 59m 2. leduart
Transformationen/Faltung zeichnerisch lösen
Status vor 10h 15m 4. Fulla
Mengenlehre/Mengenlehre
Status vor 17h 11m 3. matux MR Agent
SStoc/Münze
Status vor 17h 13m 2. angela.h.b.
SLinGS/Lösungsverhalten LGS
Status vor 22h 31m 2. fred97
UAnaRn/Satz Implizite Funktion System
^ Seitenanfang ^
www.vorhilfe.de