www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Geburtstagsproblem
Geburtstagsproblem < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Geburtstagsproblem: "Frage"
Status: (Frage) beantwortet Status 
Datum: 08:01 Mi 13.09.2006
Autor: JannisCel

Aufgabe
Ich verstehe folgenden Beweis nicht und befinde ich mich auf dem falschen Weg eine Aufgabe zu lösen

Satz: Für jede pos. reelle Zahl t gilt die Grenzwertaussage [mm] \limes_{n\rightarrow\infty} [/mm] P( [mm] X_{n} [/mm] ) [mm] \le \wurzel{n} [/mm] t ) = 1- [mm] $e^{-t^{2}/2}$ [/mm]

Der Beweis zu diesem Satz, steht auf den Seiten 72 und 73 im Buch von Norbert Henze, Stochastik für Einsteiger

Dazu will ich die Aufgabe lösen welches k gewählt werden muss damit die Wahrscheinlichkeit bei n=365 0,9 ist

        
Bezug
Geburtstagsproblem: bitte ausführlicher formuliere
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 08:37 Mi 13.09.2006
Autor: mathiash

Hallo und guten Morgen,

nicht jeder hat das von Dir genannte Buch zur Hand - ich zB nicht. Schreib doch bitte daher einfach den Satz komplett ab - inclusive
der Voraussetzungen an die [mm] X_n [/mm] .

Ein k kommt in dem so von Dir zitierten Satz nicht vor, was soll das also sein ?

Ich vermute mal, der satz hat etwas mit Tail Inequalities zu tun, [mm] (X_n) [/mm] deutet auf einen stochastischen Prozess hin.

Gruss,

Mathias

Bezug
                
Bezug
Geburtstagsproblem: "Frage"
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:17 Mi 13.09.2006
Autor: JannisCel

Aufgabe
k ist die Anzahl der Versuche, bis eine Wiederholung auftritt,
[mm] X_{n} [/mm] :=Zeitpunkt der ersten Kollision beim sukzessiven rein zufälligen Besetzen von n Fächern.

Daraus folgt [mm] P($X_{n} \le [/mm] k$) = 1 - [mm] \produkt_{i=1}^{k-1}(1-i/n) [/mm]

Das sind die Info's die ich habe.

Jetzt der Satz, dessen Beweis mir Schwierigkeiten macht

Für jede positive reelle Zahl t gilt
[mm] \limes_{n\rightarrow\infty} P($X_{n} \le \wurzel[2]{n}t$) [/mm] = 1 - [mm] e^{t^{2}/2} [/mm]

Bezug
        
Bezug
Geburtstagsproblem: Antwort
Status: (Antwort) fertig Status 
Datum: 16:48 Mi 13.09.2006
Autor: DirkG

Du kannst zunächst mal
$$P( [mm] X_{n} \leq [/mm] k ) = 1 - [mm] \prod\limits_{i=1}^{k-1} \left(1-\frac{i}{n}\right) [/mm] = [mm] 1-\frac{n!}{(n-k)!n^k}$$ [/mm]
umformen. Für große [mm]m[/mm] kann man nun die Stirling-Formel [mm]m! = \sqrt{2\pi m}\cdot m^m\cdot \exp\left\{-m+O\left(\frac{1}{m}\right)\right\}[/mm] zum Einsatz bringen, im vorliegenden Fall für [mm]m=n[/mm] und für [mm]m=n-k=n-\sqrt{n}t[/mm]. Mit sorgfältigen Umformungen und Grenzwertbetrachtung [mm]n\to\infty[/mm] kommt man dann auf dein Resultat.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de