www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Formale Sprachen" - Grammatiken & Mengen
Grammatiken & Mengen < Formale Sprachen < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Grammatiken & Mengen: Aufgabe 2
Status: (Frage) beantwortet Status 
Datum: 00:25 So 17.10.2004
Autor: Karl_Pech

Hallo Zusammen,


Aufgabe
Für zwei Binärwörter [mm]x:=x_1\ldots x_n[/mm] und [mm]y:=y_1\ldots y_m[/mm] ist die Konkatenation [mm]xy\![/mm] definiert als [mm]xy := x_1\ldots x_ny_1\ldots y_m[/mm]. Seien [mm]x,y,z\in\mathcal{B}^{\*}[/mm] Binärwörter mit [mm]z=xy\![/mm], dann heißt [mm]x\![/mm] ein Präfix von [mm]z\![/mm]. Eine nichtleere Teilmenge [mm]T\subset\mathcal{B}^{\*}[/mm] heißt präfixfrei, wenn es kein Paar [mm](x,z)\in T^2[/mm] gibt mit [mm]x\ne z[/mm] und [mm]x\![/mm] ist Präfix von [mm]z\![/mm].

(a) Sei [mm]T\![/mm] eine präfixfreie Menge und [mm]t^1,t^2,\dotsc,t^k\in T[/mm]. Zeigen Sie, daß die Wörter [mm]t^1,t^2,\dotsc,t^k[/mm] aus der Konkatenation [mm]t^1t^2\ldots t^k[/mm] rekonstruiert werden können.

(b) Sei [mm]x\in\mathcal{B}^{\*}[/mm], dann ist die sogenannte selbstbegrenzende Version [mm]\bar{x}[/mm] von [mm]x\![/mm] definiert durch [mm]\bar{x} := 1^{\ell(x)}0x[/mm], wobei [mm]1^{\ell(x)} := 11\ldots 1\in\mathcal{B}^{\ell(x)}[/mm]. Zeigen Sie, daß die Abbildung [mm]\mathcal{B}^{\*}\to\mathcal{B}^{\*}[/mm], [mm]x\mapsto \bar{x}[/mm], injektiv und die Menge [mm]\left\{\bar{x}:x\in\mathcal{B}^{\*}\right\}[/mm] präfixfrei ist.


Es wäre Klasse, wenn man mir vielleicht einige Beispiele für die Teilaufgaben a) und b) geben könnte, woran ich überhaupt die Aufgabenstellung als solche erkennen kann.

Außerdem ist mir nicht klar, was mit [mm]1^{\ell(x)}0x[/mm] und [mm]1^{\ell(x)}[/mm] gemeint ist. Ich vermute jetzt mal, daß [mm]B^{\ell(x)}[/mm] ein kartesisches Produkt ist, welches von [mm]l(x)\![/mm] abhängt. Asonsten komme ich mit dieser Aufgabe leider überhaupt nicht zurecht.


Vielen Dank!



Viele Grüße
Karl



        
Bezug
Grammatiken & Mengen: Idee
Status: (Antwort) fertig Status 
Datum: 13:21 So 17.10.2004
Autor: Hanno

Hallo Karl!

Ich denke du hast dahingehend recht, dass mit [mm] $B^x$ [/mm] das kartesische Produkt [mm] $\overbrace{B\times ...\times B}^{x-mal}$, [/mm] also alle x-Tupel von $B:={0,1}$ gemeint sind. Dann wäre meines Verständnisses nach [mm] $B\*$ [/mm] die Menge aller Binärwörter, und da das recht schierig auszudrücken ist, schreibt man einfach [mm] $B\*$ [/mm] für ein beliebiges kartesisches Produkt, wobei sich beliebig auf die Länge bezieht. Dann ist sowohl $10010$ ein Element aus [mm] $B\*$, [/mm] wenn man sich für das Sternchen ein eine 5 denkt, als auch $101$ im Falle einer 3.
Mit [mm] $1^{l(x)}$ [/mm] ist meiner Meinung nach die Folge von Einsen gemeint, die genau so viele Einsen wie $x$ Ziffern enthält. [mm] $1^{l(x)}0$ [/mm] wäre somit die Konkatenation aus $l(x)$ Einsen und einer Null.
Daraus ergibt sich aber auch eine Frage zu (a), nämlihc: ist [mm] $t^2=tt$, [/mm] also die Konkatenation von $t$ und $t$? Das ginge ja eigneltich nicht, da dann ja $t$ ein Präfix von $tt$ und somit die Menge $T$ nicht mehr Präfixfrei. Weißt du da etwas drüber? Was ist mit Rekonstruktion gemeint?

Bei (b) kannst du den Beweis, dass die besagte Abbildung injektiv ist, recht gut indirekt, also als Widerspruchsbeweis, führen. Du nimmst an, es gäbe zwei [mm] $\overline{x_1}$ [/mm] und [mm] $\overline{x_2}$ [/mm] mit [mm] $\overline{x_1}=\overline{x_2}$ [/mm] und [mm] $x_1\not= x_2$. [/mm] Dann überlegst du dir, dass die selbstbegrenzenden Versionen von [mm] $x_1$ [/mm] und [mm] $x_2$ [/mm] nicht gleich sein können. Mein Tip: unterscheide zwischen [mm] $l(x_1)=l(x_2)$ [/mm] und [mm] $l(x_1)\not= l(x_2)$. [/mm]

Die Präfixfreiheit der Menge [mm] ${\overline{x}|x\in B\*}$ [/mm] lässt sich auch gut indirekt zeigen:
Nimm auch hier einfach an, es gäbe zwei selbstbegrenzende Versionen [mm] $\overline{x_1}$ [/mm] und [mm] $\overline{x_2}$, [/mm] wobei o.B.d.A. [mm] $\overline_{x_2}$ [/mm] ein Präfix von [mm] $\overline{x_1}$ [/mm] sein soll. Nun gehst du auch hier wieder die Fälle [mm] $l(x_1)=l(x_2)$ [/mm] und das Gegenteil, also [mm] $l(x_1)\not= l(x_2)$ [/mm] durch und wirst sehen, dass in beiden Fällen zu Widersprüchen kommt.

Ich hoffe, ich konnte dir ein wenig helfen.

Liebe Grüße,
Hanno

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de