www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis-Sonstiges" - Hyperbel
Hyperbel < Sonstiges < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Hyperbel: Asymptoten Fläche Tangente
Status: (Frage) beantwortet Status 
Datum: 12:38 Do 10.09.2009
Autor: Coca

Aufgabe
Zeige: Der Flächeninhalt des Dreiecks, das von der Tangente und den beiden Asymptoten eingeschlossen wird, beträgt: A= a*b + Skizze

Hyp: [mm] x^2 [/mm] - [mm] 4y^2 [/mm] = 9
t: 5x - 8y = 9  T(5/2)

welches Dreieck?? =)

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Hyperbel: Antwort
Status: (Antwort) fertig Status 
Datum: 13:21 Do 10.09.2009
Autor: Bastiane

Hallo Coca!

Bist du sicher, dass das eine Hochschulfrage ist? Ich verschiebe es mal in die Schulanalysis...

> Zeige: Der Flächeninhalt des Dreiecks, das von der
> Tangente und den beiden Asymptoten eingeschlossen wird,
> beträgt: A= a*b + Skizze
>  
> Hyp: [mm]x^2[/mm] - [mm]4y^2[/mm] = 9
>  t: 5x - 8y = 9  T(5/2)
>  welches Dreieck?? =)

Berechne die Asymptoten und die Tangente, danach alle Schnittpunkte dieser drei (das sollten bei drei nicht parallelen Geraden genau drei Schnittpunkte insgesamt sein und das sind die Eckpunkte deines Dreiecks.

Viele Grüße
Bastiane
[cap]

Bezug
                
Bezug
Hyperbel: Rechenweg?
Status: (Frage) beantwortet Status 
Datum: 13:53 Do 10.09.2009
Autor: Coca

hyp: [mm] x^2 [/mm] - [mm] 4y^2 [/mm] = 9
---> a= 3   b= 1.5

also asy1 : y = 1.5/3 x
        asy2: y = - 1.5/3 x

wenn man nun diese asys mit der Tangente ( 5x - 8y = 9 ) schneidet
--> S1 ( 9/4.5)
--> S2 (1/-0.5)
und die 2 asys gegenseitig schneiden sich bei
--> S3 (0/0)

wenn ich nun die Fläche des Dreiecks ausrechne, also:
S3S1 = (9/4,5)
dann davon den Mittelpunkt: (4.5/2.25)
MS2 = (-3.5/-2,75) die Länge davon beträgt:
Wurzel ( [mm] 3.5^2 [/mm] + [mm] 2,75^2) [/mm] = 4,451123...
und die Länge der gegenüberliegenden Seite von S2
Wuzel [mm] (9^2 [/mm] + [mm] 4,5^2 [/mm] ) = 10,0623...
A = h * a / 2 = 4,451123 * 10,0623 / 2 = 22,39428
und a * b müsste aber 4,5 sein... wo liegt mein Fehler???

Bezug
                        
Bezug
Hyperbel: Antwort
Status: (Antwort) fertig Status 
Datum: 14:39 Do 10.09.2009
Autor: Steffi21

Hallo, deine Schnittpunkte [mm] S_1, S_2 [/mm] und [mm] S_3 [/mm] sind korrekt, betrachte die Strecke [mm] \overline{S_3S_1} [/mm] als Grundseite vom Dreieck, dir fehlt die Höhe, dann kannst du [mm] A=\bruch{1}{2}*g*h [/mm] rechnen,

[mm] g=\overline{S_3S_1}=\wurzel{101,25} [/mm] hast du

die Höhe liegt auf der senkrechten Gerade zu [mm] y=\bruch{1}{2}x [/mm] und verläuft durch den Punkt (1;-0,5) somit kennst du den Anstieg dieser Geraden -2, durch Einsetzen des Punktes bekommst du y=-2x+1,5, so jetzt schaffst du auch den Schritt zur Berechnung der Höhe

Steffi

Bezug
        
Bezug
Hyperbel: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Do 10.09.2009
Autor: Steffi21

Hallo, so sieht dein Dreieck aus:

[Dateianhang nicht öffentlich]

aber was ist A=a*b+Skizze

Steffi


Dateianhänge:
Anhang Nr. 1 (Typ: png) [nicht öffentlich]
Bezug
                
Bezug
Hyperbel: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:55 Do 10.09.2009
Autor: Coca

Danke.. meine Skizze sieht mal gleich aus,.. nur ergibt der Flächeninhalt eben nicht a * b also 4,5... *grml*


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de