www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis" - L'Hospital
L'Hospital < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

L'Hospital: zweite Meinung
Status: (Frage) beantwortet Status 
Datum: 00:02 Fr 05.11.2004
Autor: phate

Hi

es geht um die Grenzwertbestimmung eines unbestimmten Ausdrucks der Form:

[mm] \limes_{x\rightarrow 0} [/mm] ( [mm] \bruch{1}{x^{2}} [/mm] - [mm] cot^{2}x) [/mm]

Mein Übungsleiter meinte, dass man den Ausdruck nur lösen könnte, wenn man die Brüche (cot = cos / sin) gleichnamig macht und dann ableitet.
Dies wird in anbetracht des cot doch sehr aufwendig und laut seiner Rechnung erst nach der 4.ten Ableitung zum Ergebnis [mm] \bruch{2}{3} [/mm] führen.

Ich für meinen Teil hatte gedacht, wenn ich für beide Ausdrücke [mm] \bruch{1}{x^{2}} [/mm] und den [mm] cot^{2}x [/mm] jeweils einen Grenzwert finde, dann kann ich den Ausdruck auch auseinanderpflücken, getrennt die Grenzwerte bestimmen und dann die Teilergebnisse wieder zusammen fassen.

wer hat recht oder gibts noch nen anderen Weg??

vielen Dank schonmal
phate


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
L'Hospital: Antwort
Status: (Antwort) fertig Status 
Datum: 00:47 Fr 05.11.2004
Autor: Marcel

Hi,

> Hi
>  
> es geht um die Grenzwertbestimmung eines unbestimmten
> Ausdrucks der Form:
>  
> [mm]\limes_{x\rightarrow 0}[/mm] ( [mm]\bruch{1}{x^{2}}[/mm] - [mm]cot^{2}x) [/mm]
>  
> Mein Übungsleiter meinte, dass man den Ausdruck nur lösen
> könnte, wenn man die Brüche (cot = cos / sin) gleichnamig
> macht und dann ableitet.

Ob es nur so geht, weiß ich nicht. Vielleicht gibt es auch noch andere Wege. Jedenfalls:
Da du als Überschrift L'Hospital stehen hast, antworte ich dir auch diesbezüglich:
Um de L'Hôpital anwenden zu können, müssen ja entweder
Der Zähler und der Nenner jeweils (betragsmäßig) gegen $0$ gehen bei der Grenzwertbildung

oder

Der Zähler und der Nenner jeweils (betragsmäßig) gegen [mm] $\infty$ [/mm] gehen bei der Grenzwertbildung.

Nur für solche Fälle (also unter diesen Voraussetzungen) ist der Satz formuliert (siehe etwa: []hier oder:
[]Skript,
S. 126 (skriptinterne Zählung oben rechts), Satz 13.22).
Außerdem brauchst du noch weitere Voraussetzungen der Diff'barkeit etc., das kannst du ja z.B. im Skript nachlesen.

>  Dies wird in anbetracht des cot doch sehr aufwendig und
> laut seiner Rechnung erst nach der 4.ten Ableitung zum
> Ergebnis [mm]\bruch{2}{3}[/mm] führen.

  

> Ich für meinen Teil hatte gedacht, wenn ich für beide
> Ausdrücke [mm]\bruch{1}{x^{2}}[/mm] und den [mm]cot^{2}x[/mm] jeweils einen
> Grenzwert finde, dann kann ich den Ausdruck auch
> auseinanderpflücken, getrennt die Grenzwerte bestimmen und
> dann die Teilergebnisse wieder zusammen fassen.

Das könntest du, wenn die Grenzwerte in vernünftiger Weise existieren würden. Es gilt aber:
[mm]\lim_{x \to 0}\frac{1}{x^2}=\infty[/mm] und
[mm]\lim_{x \to 0}{cot^2(x)}=\lim_{x \to 0}{\left(\frac{cos(x)}{sin(x)}\right)^2}=\frac{1}{\limes_{x \to 0}sin^2(x)}=\infty[/mm]
(Das ist jetzt formal nicht ganz korrekt, aber ich denke du weißt, wie das zu lesen ist!)

Dann müsstest du [mm] $\infty-\infty$ [/mm] rechnen. Da ist das Problem.
  

> wer hat recht oder gibts noch nen anderen Weg??

Also: So wie du es vorgeschlagen hast, geht es nicht. Mit dem Weg deines Übungsleiters klappt es (hoffentlich, denn ich habe es nicht nachgerechnet ;-)).
Also: Da hat wohl der Übungsleiter recht.
  

> vielen Dank schonmal
>  phate

Gern geschehen.:-)

Viele Grüße,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de