www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Lineare Algebra - Moduln und Vektorräume" - Lineara Abhängigkeit
Lineara Abhängigkeit < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineara Abhängigkeit: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:19 Do 24.12.2009
Autor: Schmetterfee

Aufgabe
Sei [mm] a_{1},...,a_{n} [/mm] linear abhängig im Vektorraum V über dem Körper K. Richtig oder Falsch:
a) Jedes [mm] a\in [/mm] ist auf wenigstens zwei verschiedene Weisen aus [mm] a_{1},...,a_{n} [/mm] linear kombinierbar.
b) Jedes [mm] a_{p} [/mm] ist linear kombinierbar aus den [mm] a_{j} [/mm] mit [mm] j\in{1,...,n} [/mm] \
{p}.

Ich bin mir 100% sicher das das erste falsch ist....müsste daher nicht auch das zweite falsch sein?

aber in unserem Skript meine ich gefunden zu haben, dass das zweite richtig ist. Also meine Frage kann das erste falsch sein und das zweite trotzdem richtig sein?

LG und frohe Feiertage
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineara Abhängigkeit: Antwort (fehlerhaft)
Status: (Antwort) fehlerhaft Status 
Datum: 13:30 Do 24.12.2009
Autor: reverend

Hallo Schmetterfee,

Du hast Recht: beides ist falsch.

Allerdings ist die Voraussetzung ja nicht sehr genau angegeben. Du gehst, wie ich auch, offenbar davon aus, dass das heißt, dass der Satz von Vektoren nicht linear unabhängig ist. Dann genügt es ja, wenn z.B. [mm] \vec{a}_5=2\vec{a}_4 [/mm] ist, ansonsten aber jeder dieser beiden Vektoren mit den übrigen [mm] a_i [/mm] zusammen einen linear unabhängigen Satz bildet.

Nur wenn die Aussage b) mit zur Voraussetzung gehören würde, wäre a) richtig, und b) trivial.

fw,
reverend


Bezug
                
Bezug
Lineara Abhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:37 Do 24.12.2009
Autor: Schmetterfee

Danke für die schnelle Antwort...jetzt sind meine Bedenken bereinigt...
Frohe Weiihnachten Schmetterfee

Bezug
                
Bezug
Lineara Abhängigkeit: a) sehr wohl richtig
Status: (Korrektur) fundamentaler Fehler Status 
Datum: 23:34 Mi 06.01.2010
Autor: tobit09

Hallo zusammen,

falls sich da jetzt noch jemand dafür interessieren sollte:

a) ist sehr wohl richtig!

Beweis:
Da [mm]a_1,\ldots,a_n[/mm] linear abhängig sind, existieren [mm]\lambda_1,\ldots,\lambda_n\in K[/mm] nicht alle 0 (etwa [mm]\lambda_k\not= 0[/mm]) mit [mm]\summe_{i=1}^n\lambda_ia_i=0[/mm]. Wegen [mm]a\in[/mm] existieren  [mm]\mu_1,\ldots,\mu_n\in K[/mm] mit [mm]a=\summe_{i=1}^n\mu_ia_i[/mm]. Dann gilt [mm]a=\summe_{i=1}^n\mu_ia_i+0=\summe_{i=1}^n\mu_ia_i+\summe_{i=1}^n\lambda_ia_i=\summe_{i=1}^n(\mu_i+\lambda_i)a_i[/mm]. Wegen [mm]\lambda_k\not=0[/mm] gilt [mm]\mu_k+\lambda_k\not=\mu_k[/mm], so dass [mm]a=\summe_{i=1}^n\mu_ia_i[/mm] und [mm]a=\summe_{i=1}^n(\mu_i+\lambda_i)a_i[/mm] zwei verschiedene Darstellungen von [mm]a[/mm] als Linearkombination der [mm]a_1,\ldots,a_n[/mm] sind.

Viele Grüße
Tobias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de