www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Normalteiler - lineare Gruppe
Normalteiler - lineare Gruppe < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalteiler - lineare Gruppe: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:04 So 28.10.2007
Autor: Hollo

Aufgabe
Voraussetzungen: B,U [mm] \subset G:=Gl(n,\IR), [/mm] n [mm] \ge [/mm] 2.
B:= { [mm] (a_{ij}) \in [/mm] G | [mm] a_{ij}=0; [/mm] i>j }
U:= { [mm] (a_{ij}) \in [/mm] B | [mm] a_{ii}=1; [/mm] 1 [mm] \le [/mm] i [mm] \le [/mm] n }

a) Zeige, dass B & U mit Matrizenmultiplikation Untergruppen von G sind und dass U ein Normalteiler von B ist.
b) Zeige: B/U [mm] \cong (\IR^{*})^{n} [/mm]
c) Sind U,B Normalteiler von G?
d) Zeige, dass G kein Normalteiler von [mm] Gl(n,\IC) [/mm] ist für n [mm] \ge [/mm] 2.

Hi, zunächst mal Entschuldigung, dass es so eine lange Aufgabe mit 4 Teilen ist..

Zu a) Zu zeigen, dass B,U UG sind war eigentlich leicht oder gibt es da Besonderheiten? Um zu zeigen, dass U NT ist suche ich einen Gruppenhomo [mm] \pi: [/mm] B [mm] \to B\U, [/mm] mit [mm] ker(\pi)=U. [/mm] Leider fällt mir nichts ein.. Was ist überhaupt [mm] B\U [/mm] in diesem Fall? Eine Menge von Nebenklassen, aber kann man sie nicht Explizit angeben irgendwie?

zu b)Siehe a), wie sieht B/U aus? Die andere Menge soll [mm] R^{n} [/mm] ohne Null sein

zu c) Reicht es hier ein Gegenbeispiel für n=2 zu geben? Da hätte ich eins..

zu d) hoffentlich keine Induktion!?

Ja das fällt mir so dazu ein, also leider nicht besonders viel..
Lg Hollo

        
Bezug
Normalteiler - lineare Gruppe: Antwort
Status: (Antwort) fertig Status 
Datum: 11:36 Mo 29.10.2007
Autor: andreas

hi

zu a) und b): wende den homomorphiesatz auf $B [mm] \longrightarrow (\mathbb{R}^\times)^n; \; (a_{ij}) \longmapsto (a_{11}, a_{22}, [/mm] ..., [mm] a_{nn})^t$ [/mm] an.

zu c) wenn du ein gegenbeispiel für $n = 2$ hast, lässt sich das doch bestimmt schnell verallgemeinern, indem du die matrizen durch teile der einheitsmatrix ergänzt? gib doch mal dein gegenbeispiel an.

zu d) auch hier sollte sich schnell ein allgemeines gegenbeispiel finden lassen.

grüße
andreas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de