www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Stochastik" - Normalverteilung
Normalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Symmetrie
Status: (Frage) beantwortet Status 
Datum: 17:48 Di 27.09.2005
Autor: stochastik-stefan

Hallo!

Zusätzlich zu der alten Frage, die ich hatte (auf die jedoch leider noch niemand geantwortet hat, weshalb ich sie unten nochmal geschrieben habe), habe ich jetzt noch eine ganz triviale Frage. Eigentlich bin ich mir der Antwort sicher, aber ich lass es mir lieber nochmal von euch Experten 'absegnen'.

Und zwar:

Die zweidim. Verteilungsfunktion der Strd-Normalverteilung ist gegeben durch

[mm] $$N_2(x,y,\rho)=\int_{-\infty}^{y}\limits\int_{-\infty}^{x}\limits \varphi_2(u,v,\rho)dudv.$$ [/mm]
bzw.
[mm] $$N_2(x,y,\rho)=\int_{-\infty}^{x}\limits\int_{-\infty}^{y}\limits \varphi_2(u,v,\rho)dvdu.$$ [/mm]

Dabei ist [mm] $$\varphi_2(x,y;\rho)=\frac{1}{2\pi\wurzel{1-\rho^2}}\exp\left(-\frac{x^2-2\rho xy+y^2}{2(1-\rho^2)}\right). [/mm] $$

Es gilt ja [mm] $$\varphi_2(x,y;\rho)=\varphi_2(y,x;\rho).$$ [/mm]

Gilt auch [mm] $$N_2(x,y;\rho)=N_2(y,x;\rho)???$$ [/mm]
Muss doch eigentlich, oder?? (ich finde das sehr logisch, aber ich zweifel an allem!)
Die Integrale kann man ja beliebig vertauschen, und ob man du oder dv hat, ist doch auch egal, oder liege ich da falsch?

Das war die neue Frage, und jetzt nochmal die alte:


Ich habe mir nochmal die Antwort auf den letzten Artikel und versucht, das auf den 3-dim. Fall zu übertragen, da hab ich mich mal wieder etwas gefragt. Wir hatten ja:

[mm] $$N_2(x,-y,-\rho)=\int_{-\infty}^{-y}\limits\int_{-\infty}^{x}\limits \varphi_2(u,v,-\rho)dudv.$$ [/mm]

Jetzt frag ich mich, ob es nicht
[mm] $$N_2(x,-y,-\rho)=\int_{-\infty}^{-y}\limits\int_{-\infty}^{x}\limits \varphi_2(u,-v,-\rho)dudv$$ [/mm]

heißen muss?!

[mm] \begin{equation} \varphi_2(x,y;\rho)=\frac{1}{2\pi\wurzel{1-\rho^2}}\exp\left(-\frac{x^2-2\rho xy+y^2}{2(1-\rho^2)}\right) \end{equation} [/mm]

Wie wäre das denn für den 3-dim Fall?

Ist es
[mm] $$N_3(x,y,-z;\rho_{xy},-\rho_{xz},-\rho_{yz})=\int_{-\infty}^{-z}\limits\int_{-\infty}^{y}\limits\int_{-\infty}^{x}\limits\varphi_3(u,v,w;\rho_{uv},-\rho_{uw},-\rho_{vw})dudvdw??$$ [/mm]
ODER
[mm] $$N_3(x,y,-z;\rho_{xy},-\rho_{xz},-\rho_{yz})=\int_{-\infty}^{-z}\limits\int_{-\infty}^{y}\limits\int_{-\infty}^{x}\limits\varphi_3(u,v,-w;\rho_{uv},-\rho_{uw},-\rho_{vw})dudvdw??$$ [/mm]

Es wär nett, wenn sich das jemand mal ansehen könnte, es ist auch nicht schwer, aber ich steh auf dem Schlauch.

Danke,
Stefan


        
Bezug
Normalverteilung: Keine Doppelpostings
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:07 Mi 28.09.2005
Autor: Julius

Hallo!

Im ersten Teil stimmen deine Überlegungen, ja. [ok]

Zum zweiten Teil: Bitte Fragen nicht doppelt ins Forum stellen!! Außerdem ist doch die Fälligkeit deiner anderen Frage noch gar nicht abgelaufen und die Frage in der Übersicht für alle ersichtlich, was soll es daher bringen sie doppelt zu stellen?

Vielleicht solltest du für interessante Helfer (dort, im anderen Thread!!) bitte mal mitteilen, wie [mm] $\varphi_3$ [/mm] aussieht, da ich kaum glaube, dass es jeder weiß. Dann wird die Hilfsbereitschaft vielleicht steigen, da einfach mehr Leute darüber nachdenken können...

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de