www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Vorhilfe
  Status Geisteswiss.
    Status Erdkunde
    Status Geschichte
    Status Jura
    Status Musik/Kunst
    Status Pädagogik
    Status Philosophie
    Status Politik/Wirtschaft
    Status Psychologie
    Status Religion
    Status Sozialwissenschaften
  Status Informatik
    Status Schule
    Status Hochschule
    Status Info-Training
    Status Wettbewerbe
    Status Praxis
    Status Internes IR
  Status Ingenieurwiss.
    Status Bauingenieurwesen
    Status Elektrotechnik
    Status Maschinenbau
    Status Materialwissenschaft
    Status Regelungstechnik
    Status Signaltheorie
    Status Sonstiges
    Status Technik
  Status Mathe
    Status Schulmathe
    Status Hochschulmathe
    Status Mathe-Vorkurse
    Status Mathe-Software
  Status Naturwiss.
    Status Astronomie
    Status Biologie
    Status Chemie
    Status Geowissenschaften
    Status Medizin
    Status Physik
    Status Sport
  Status Sonstiges / Diverses
  Status Sprachen
    Status Deutsch
    Status Englisch
    Status Französisch
    Status Griechisch
    Status Latein
    Status Russisch
    Status Spanisch
    Status Vorkurse
    Status Sonstiges (Sprachen)
  Status Neuerdings
  Status Internes VH
    Status Café VH
    Status Verbesserungen
    Status Benutzerbetreuung
    Status Plenum
    Status Datenbank-Forum
    Status Test-Forum
    Status Fragwürdige Inhalte
    Status VH e.V.

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Dt. Schulen im Ausland: Mathe-Seiten:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - Nullstellenberechnung
Nullstellenberechnung < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nullstellenberechnung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 20:36 Mi 16.01.2008
Autor: X-Metal

Aufgabe
Es seien f(x) = [mm] (x(1-x))^2 [/mm] und g(x) = f' (x). Zeigen Sie mit Hilfe des Mittelwertsatzes (bzw. des Satzes von Rolle), dass g im Intervall (0,1) mindestens eine Nullstelle hat.

Hallo,

ich brauche Hilfe bei dieser Aufgabe. In der letzten Vorlesung vor Abgabe der Lösungen kamen beide Sätze aber noch nicht vor, und morgen ist keine Vorlesung.

Wie gehe ich da ran, denn aus den Ausführungen der beiden Sätze im Internet werde ich nicht schlau.

Danke und Gruss,
X-Metal


        
Bezug
Nullstellenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:59 Mi 16.01.2008
Autor: X-Metal

hallo,

sorry, aber ich wusste nicht, ob dies die richtige rubrik bzw. forum ist

hab die frage aus versehen zweimal eingestellt

x-metal

Bezug
        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:06 Mi 16.01.2008
Autor: M.Rex

Hallo

Hier mal der Satz von Rolle:
Sei [mm] f:I\to\IR [/mm] stetig und im Inneren des Intervalles I differenzierbar, und a,b [mm] \in [/mm] I mit a<b. Ausserdem gelte f(a)=f(b)

Dann gibt es ein [mm] \epsilon [/mm] im Intervall(a;b), also auch auch I, so dass gilt. [mm] f'(\epsilon)=0, [/mm] was ja definiert ist, da [mm] \epsilon [/mm] im Inneren des Intervalles I ist.


Wahlweise kannst du das auch mit dem Mittelwertsatz zeigen, wie in der Aufgabe erwähnt.

Hier mal dieser:

Sei [mm] f:I\to\IR [/mm] stetig und im Inneren des Intervalles I differenzierbar, und a,b [mm] \in [/mm] I mit a<b.

Dann gibt es ein [mm] \epsilon [/mm] im Intervall (a;b), also auch auch I, so dass gilt. [mm] f'(\epsilon)=\bruch{f(b)-f(a)}{b-a} [/mm]

Jetzt musst du mal prüfen, ob die Voraussetzungen erfüllt werden. Tipp: a=0, b=1.

Hilft das erstmal weiter?

Marius

Bezug
                
Bezug
Nullstellenberechnung: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 21:16 Mi 16.01.2008
Autor: X-Metal

Hallo,

danke erstmal Marius. Das hilft aber noch nicht wirklich, da unser Prof. uns meist ein Beispiel oder ähnliches vorrechnet zum besseren Verständnis.

Mittelwertsatz und den von Rolle habe ich im Netz ja auch schon gefunden, trotzdem aber danke fürs posten, aber helfen tut das noch nicht, denn verstehen tue ich ihn noch nicht wirklich.

Ich wäre für einen Ansatz dankbar, vielleicht komme ich dann ja weiter.

Welche methode ist denn besser, Mittelwertsatz oder Satz von Rolle??

Gruss,
X-Metal


Bezug
                        
Bezug
Nullstellenberechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:28 Mi 16.01.2008
Autor: M.Rex

Hallo.

Ich würde es mit dem Mittelwertsatz versuchen.

Versuch doch mal, zu überprüfen, ob die Voraussetzungen dafür gegeben sind.

Also:

Ist f auf (0;1) differenzierbar? Und gilt 0<1?

Dann gilt ja nach dem MWS:

[mm] f'(\epsilon)=\bruch{f(1)-f(0)}{1-0}=... [/mm]
Wenn du jetzt noch bedenkst, dass g(x):=f'(x) ist, hast du es fast schin da stehen

Marius

Bezug
                                
Bezug
Nullstellenberechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:34 Mi 16.01.2008
Autor: X-Metal

gut, danke erstmal

ich beschäftige mich damit ;-)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.vorhilfe.de